微流道模具掩模电解加工多场耦合数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numeric Simulation of Mask Electrochemical Machining for Micro-channel Mold under Multi-physics Field Coupling
  • 作者:户亚娜 ; 王续跃
  • 英文作者:HU Ya′na;WANG Xuyue;School of Mechanical Engineering,Dalian University of Technology;
  • 关键词:微流道模具 ; 掩膜电解加工 ; 多物理场耦合 ; 数值模拟
  • 英文关键词:micro-channel mold;;mask electrochemical machining;;multi-physics field coupling;;numeric simulation
  • 中文刊名:DJGU
  • 英文刊名:Electromachining & Mould
  • 机构:大连理工大学机械工程学院;
  • 出版日期:2019-04-01
  • 出版单位:电加工与模具
  • 年:2019
  • 期:No.345
  • 基金:创新研究群体科学基金资助项目(51621064)
  • 语种:中文;
  • 页:DJGU2019S1010
  • 页数:6
  • CN:S1
  • ISSN:32-1589/TH
  • 分类号:55-59+62
摘要
针对医用微流道模具掩膜电解加工技术难题,应用Comsol软件建立多物理场耦合有限元模型,计算得到微流道段内流速分布。通过分析电解液入口流速对氢气气泡率、铁离子浓度和温度的影响,进而分析对电解液电导率的影响。在相同加工参数下,宽500μm、深200μm沟槽尺寸和形状的计算模拟结果与实验结果基本吻合,其深度方向最大误差为10.07μm、相对误差为5.03%,可为微流道模具掩膜电解加工的流场控制提供数值计算和实验依据。
        In view of the technical problem of mask electrochemical machining for medical microchannel mold mask,the multi-physics field coupling module based on Comsol software was used to establish a multi-physics field coupling finite element model,and then the distribution of flow velocity in the micro-channel was calculated. The influence of bubble rate of hydrogen,iron ion concentration and temperature on the electrolyte inlet flow rate were studied in order to analyze its influence on the conductivity of the electrolyte. The research shows that the simulated results of a micro-channel sample of 500 μm width and 200 μm depth reaches an agreement with the experimental results. The maximum and percentage error in the depth direction is 10.07 μm and 5.03%,which provides a theoretical and experimental basis for flow field control of complex graphics mask electrochemical machining.
引文
[1]张朝阳,秦昌亮,冯钦玉,等.脉冲激光电化学复合的定域性研究及三维微细刻蚀加工[J].机械工程学报,2014,50(23):200-206.
    [2]朱荻,曲宁松,RAJURKAR K P,等.电极平动式电解孔加工技术研究[J].机械工程学报,2001,37(5):105-109.
    [3]王明环,章巧芳,彭伟.螺旋孔电解加工多物理场耦合机理研究[J].南京航空航天大学学报,2014,46(5):774-779.
    [4]陈远龙,裴迪,方明,等.基于多场耦合仿真的脉冲电化学加工温度域的研究[C]//第16届全国特种加工学术会议(上).厦门,2015:510-517.
    [5]DECONINCK D,DAMME V S,ALBU C,et al. Study of the effects of heat removal on the copying accuracy of the electrochemical machining process[J]. Electrochimica Acta,2011,56(16):5642-5649.
    [6]KLOCKE F,ZEIS M,HARST S,et al. Modeling and simulation of the electrochemical machining(ECM)material removal process for the manufacture of aero engine components[J]. Procedia CIRP,2013(8):265-270.
    [7]FUJISAWA T,INABA K,YAMAMOTO M. Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade[J]. Journal of Fluids Engineering,2008,130(8):080201.1-081703.9.
    [8]康保印,范植坚,唐霖.闭式整体构件涡道电解加工流场设计与分析[J].兵工学报,2015,36(1):151-156.
    [9]WINKELMANN C,LANG W. Influence of the electrode distance and metal ion concentration on the resulting structure in electrochemical micromachining with structured counter electrodes[J]. International Journal of Machine Tools and Manufacture,2013,72:25-31.
    [10]DECONINCK D,DAMME V S,DECONINCK J. A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I:theoretical basis[J]. Electrochimica Acta,2012,60:321-328.
    [11]MORSALI S,DARYADEL S,ZHOU Z,et al. Multiphysics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition:effect of environmental humidity[J]. Journal of Applied Physics,2017,121(2):024903.
    [12]陈远龙,方明,裴迪,等.叶片电化学加工过程多场耦合仿真[J].中国机械工程,2016,27(22):3087-3092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700