超声波改性强化Mn/AC催化臭氧化降解苯酚效能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of ultrasonic modification on catalytic ozonation of phenol over a Mn/AC catalyst
  • 作者:占小翠 ; 旷文君 ; 丁丁 ; 周大凯 ; 张洁
  • 英文作者:ZHAN Xiao-cui;KUANG Wen-jun;DING Ding;ZHOU Da-kai;ZHANG Jie;School of Environment Science and Spatial Informatics,China University of Mining and Technology;
  • 关键词:超声改性 ; Mn/AC ; 催化臭氧氧化 ; 苯酚
  • 英文关键词:ultrasound modification;;Mn/AC;;catalytic ozonation;;phenol
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:中国矿业大学环境与测绘学院;
  • 出版日期:2019-01-05 10:49
  • 出版单位:现代化工
  • 年:2019
  • 期:v.39;No.388
  • 基金:国家自然科学基金青年科学基金(51602344);; 国家级大学生创新训练计划(201710290036)
  • 语种:中文;
  • 页:XDHG201902023
  • 页数:5
  • CN:02
  • ISSN:11-2172/TQ
  • 分类号:109-113
摘要
为提高臭氧氧化降解含酚废水的效能,对载体活性炭进行超声改性,并利用浸渍沉淀法制备Mn/AC催化剂,通过BET、SEM、EDS、XRD表征分析超声处理对其结构的影响,同时用苯酚模拟废水考察超声改性对其去除效能的影响。结果表明,超声改性起到清灰造孔作用,载体孔道增多,比表面积和孔体积增高,强化了负载,Mn的负载量由2. 40%升至3. 85%并以MnO2形式存在,增大分散度;超声改性增强了催化剂的吸附及催化臭氧化能力,提高体系的吸附-催化臭氧氧化协同效应,Mn/U60-AC+O3体系在催化剂质量浓度为2 g/L、苯酚初始质量浓度为100 mg/L、温度为(25±1)℃、臭氧质量浓度为3 mg/L、气体通入流量为4 m L/min、pH=10、水体积为1 L的条件下反应24 min,苯酚的去除率高达99. 64%,比Mn/AC+O3体系提高了16%。
        Activated carbon( AC) is firstly modified via ultrasound and then Mn/AC catalyst is synthesized by means of impregnation precipitation method,aiming to improve the degradation efficiency of phenol-containing wastewater by catalytic ozonation.Influences of ultrasound modification on catalyst structure are inspected through characterization of SEM,BET,EDS and XRD. Imitated phenol-containing wastewater is used to evaluate the potency of ultrasonic modification.Results illustrates that ultrasonic modification of AC carrier can play a role in cleaning and making hole,bringing the number of holes,surface area and pore volume to increase,which in turn enhances the load of Mn to increase from 2. 40% to 3. 85%.Mn,in the form of MnO_2,exists more uniformly on the carrier,implying an increase of dispersity.The adsorption and catalytic ozonation abilities of catalyst are also improved by ultrasound modification,and the synergy of adsorption-catalytic ozonation are improved too. The removal rate of phenol can reach as high as 99. 64% when the wastewater has been treated for 24 h over Mn/U60-AC under the conditions that the mass content of catalyst is 2 g·L-1,the initial phenol concentration is 100 mg·L-1,temperature is at 25±1℃,the concentration of ozone is 3 mg·L-1,gas flow rate is set at 4 m L·min-1,pH= 10 and water volume is 1 L.The removal rate is 16 percentage higher than that over Mn/AC under the same conditions.
引文
[1]王韬,李鑫钢,杜启云,等.含酚废水治理技术研究进展[J].化工进展,2008,27(2):231-235.
    [2]Mantzavinos D,Kassinos D,Parsons S A.Applications of advanced oxidation processes in wastewater treatment[J]. Water Research,2009,43(16):3901-3901.
    [3]高超,王启山,夏海燕.国内外高级氧化技术降解含酚废水的研究进展[J].工业水处理,2011,31(5):9-12.
    [4]石岩,邓淑仪,许丹宇,等.臭氧催化氧化法处理含酚废水的研究进展[J].水污染防治,2015,3:17-20.
    [5]Rie N,Yoko N,Naoto O,et al.Modification of pore structure in activated carbons by heat treatment with thermoplastic resins[J]. New Carbon Materials,2006,21(4):289-296.
    [6]Chingombe P,Saha B,Wakeman R J. Surface modification and characterisation of a coal-based activated carbon[J].Carbon,2005,43(15):3132-3143.
    [7]Cui Xiaojing,Jiang Chengfa.Adsorption of phenol on organobentonites wrapped with osmotic membrane[J]. Journal of Sichuan University(Natural Science Edition),2006,43:645-647.
    [8]刘健松,张静,刘春,等.硝酸改性活性炭特征及其催化臭氧氧化性能[J].环境科学与技术,2013,12:105-109.
    [9]赵晓媛,张亚平,仲佳鑫.超声浸渍法制备MnOx/Ti O2催化剂低温选择性催化还原NO[J].东南大学学报(自然科学版),2011,41(6):1225-1230.
    [10]Jeong H B,Young W K.Ultrasound-assisted copper deposition on a polymer membrane and application for methanol steam reforming[J].Ultrasonics Sonochemistry,2013,20:472-477.
    [11]Rosal R,Gonzalo S,Santiago J,et al. Kinetics and mechanism of catalytic ozonation of aqueous pollutants on metal oxide catalysts[J].Ozone-Science&Engineering,2011,33(6):434-440.
    [12]Yaping Zhou,Guojun Lan,Bin Zhou,et al.Effect of pore structure of mesoporous carbon on its supported Ru catalysts for ammonia synthesis[J].Chinese Journal of Catalysis,2013(34):1395-1401.
    [13]Sui M,Liu J,Sheng L. Mesoporous material supported manganese oxides(MnOx/MCM-41)catalytic ozonation of nitrobenzene in water[J]. Applied Catalysis B Environmental,2011,106(1):195-203.
    [14]Rosal R,Gonzalo M S,Rodríguez A.Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide[J]. Journal of Hazardous Materials,2010,183(1):271-278.
    [15]Sui M,Xing S,Sheng L,et al.Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst[J]. Journal of Hazardous Materials,2012,227-228(227-228):227-236.
    [16]Fujita H,lzumi J,Sagahashi M,et al. Decomposition of trichloroethene on ozone adsorbed high silica zeolites[J].Water Research,2004,38(1):166-172.
    [17]唐建可,马春蕾.正交设计与响应面优化萃取精馏分离苯-噻吩的模拟[J].现代化工,2016,(12):162-166.
    [18]夏哲韬.吸附-催化臭氧氧化去除印染废水特征污染物的研究[D].杭州:浙江大学,2012.
    [19]Huang Yajing,Xu Wenjun,Hu Lingling,et al.Combined adsorption and catalytic ozonation for removal of endocrine disrupting compounds over MWCNTs/Fe3O4composites[J]. Catalysis Today,2017(15):143-150.
    [20]Alvrez P M,Beltrn F J,Masa F J,et al. A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment[J]. Applied Catalysis B:Environmental,2009,92(3):393-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700