等温压缩空气储能系统喷水量研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Water Spraying Rate for an Energy Storage System of Isothermal Compressed Air
  • 作者:何子伟 ; 罗马吉 ; 涂正凯
  • 英文作者:HE Ziwei;LUO Maji;TU Zhengkai;Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology;Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan University of Technology;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology;
  • 关键词:压缩空气储能 ; 等温压缩 ; 储热 ; 饱和水蒸气分压
  • 英文关键词:energy storage of compressed air;;isothermal compression;;heat storage;;saturated water vapor pressure
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:武汉理工大学现代汽车零部件技术湖北省重点实验室;武汉理工大学汽车零部件技术湖北省协同创新中心;武汉理工大学材料复合新技术国家重点实验室;
  • 出版日期:2017-10-18 16:32
  • 出版单位:西安交通大学学报
  • 年:2018
  • 期:v.52
  • 基金:国家自然科学基金资助项目(51476119)
  • 语种:中文;
  • 页:XAJT201801006
  • 页数:7
  • CN:01
  • ISSN:61-1069/T
  • 分类号:38-44
摘要
为了揭示等温压缩空气储能系统中不同参数对喷水量的影响,提出了利用多变指数接近1的多变压缩来研究近等温压缩,将压缩终态的气态水、液态水、空气视为理想混合物,分析了压缩能量的分布状况,并运用饱和水蒸气分压公式、道尔顿分压定律和组分热力学参数,研究了不同状态参数下所需喷水量。研究表明,适当增大压比或降低终温(喷水量增大)可使得传热量比例增大,当压比为10、转速为100r/min时,喷水量由5.73kg/s提高至8.68kg/s,传热量比例提高了5%;压比、传热效率、终温均对空气与水质量之比有影响;其他条件一定时,转速对空气与水质量之比没有影响,当压比为10,传热效率为95%,终温为50℃,转速分别为60、100、150r/min时,空气与水质量之比均为0.86;较低压强(压比小于10)不利水储热的进行。
        To research the effect of different parameters on the water spraying rate for an energy storage system of isothermal compressed air,a novel method was proposed to study the quasiisothermal compression using a compression process with the polytropic exponent close to 1,where the water vapor,liquid water and air in the final state were assumed as an ideal mixture.The water spraying rate under different state parameters was researched according to the saturated water vapor pressure formula, the Dalton partial pressure theory and the thermodynamic parameters of the components.The results show that the heat transfer proportion increases with the pressure ratio and the water spraying rate.When the pressure ratio is 10 and the rotation speed is 100 r/min,the water spraying rate increases from 5.73 kg/s to 8.68 kg/s,and the proportion of heat transfer is increased by 5%.The pressure ratio,heat transfer efficiency and final temperature all have effects on the mass ratio of air to water.Moreover,results also show that when other conditions are constant,the rotation speed has almost no effecton the ratio of air to water.When the pressure ratio increases to 10,the heat transfer efficiency is95%and the final temperature is 50℃,the mass ratio of air to water maintains at 0.86 when the rotation speed is 60,100,150 r/min,respectively.In all,lower pressure is unfavorable to the thermal storage of water.
引文
[1]梅生伟,薛小代,陈来军.压缩空气储能技术及其应用探讨[J].南方电网技术,2016,10(3):11-15.MEI Shengwei,XUE Xiaodai,CHEN Laijun.Discussion on compressed air energy storage technology and its application[J].Southern Power System Technology,2016,10(3):11-15.
    [2]张玥.2011年—2015年中国弃风数据统计[J].风能,2016(2):34-35.ZHANG Yue.China abandoned wind data statistics from 2011to 2015[J].Wind Energy,2016(2):34-35.
    [3]BUDT M,WOLF D,SPAN R,et al.A review on compressed air energy storage:basic principles,past milestones and recent developments[J].Applied Energy,2016,170:250-268.
    [4]VENKATARAMANI G,PARANKUSAM P,RAMALINGAM V,et al.A review on compressed air energy storage:apathway for smart grid and polygeneration[J].Renewable and Sustainable Energy Reviews,2016,62:895-907.
    [5]IBRAHIM H,ILINCA A,PERRON J.Energy storage systems:characteristics and comparisons[J].Renewable and Sustainable Energy Reviews,2008,12(5):1221-1250.
    [6]CHEN L J,ZHENG T W,MEI S W,et al.Review and prospect of compressed air energy storage system[J].Journal of Modern Power Systems and Clean Energy,2016,4(4):529-541.
    [7]CONEY M W,STEPHENSON P,MALMGREN A,et al.Development of a reciprocating compressor using water injection to achieve quasi-isothermal compression[C]∥Proceedings of the 16th International Compressor Engineering Conference.West Lafayette,USA:Purdue University Purdue e-Pubs,2002:1508.
    [8]VAN DE VEN J,LI P.Liquid piston gas compression[J].Applied Energy,2009,86(10):2183-2191.
    [9]QIN C,LOTH E.Liquid piston compression efficiency with droplet heat transfer[J].Applied Energy,2014,114:539-550.
    [10]CRANE S E,BERLIN E P,Jr,ABKENAR A H P,et al.Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange:US8215105B2[P].2012-07-10.
    [11]MCBRIDE T O,BOLLINGER B,BESSETTE J,et al.Systems and methods for foam-based heat exchange during energy storage and recovery using compressed gas:US20130074485A1[P].2013-03-28.
    [12]张新敬,陈海生,刘金超,等.压缩空气储能技术研究进展[J].储能科学与技术,2012(1):26-40.ZHANG Xinjing,CHEN Haisheng,LIU Jinchao,et al.Research progress in compressed air energy storage system:a review[J].Energy Storage Science Technology,2012(1):26-40.
    [13]陈海生,刘金超,郭欢,等.压缩空气储能技术原理[J].储能科学与技术,2013(2):146-151.CHEN Haisheng,LIU Jinchao,GUO Huan,et al.Technical principle of compressed air energy storage system[J].Energy Storage Science Technology,2013(2):146-151.
    [14]姚尔人,王焕然,席光.一种压缩空气储能与内燃机技术耦合的冷热电联产系统[J].西安交通大学学报,2016,50(1):22-27.YAO Erren,WANG Huanran,XI Guang.A novel combined cooling heating and power system with coupled compressed air energy storage and combustion engine[J].Journal of Xi’an Jiaotong University,2016,50(1):22-27.
    [15]沈维道,童钧耕.工程热力学[M].4版.北京:高等教育出版社,2007:268-269.
    [16]ROGERS A,HENDERSON A,WANG X,et al.Compressed air energy storage:thermodynamic and economic review[C]∥Power and Energy Society General Meeting.Piscataway,NJ,USA:IEEE,2014:1-5.
    [17]SONNTAG R E,BORGNAKKE C,VAN WYLEN G J,et al.Fundamentals of thermodynamics[M].8th ed.New York,USA:Wiley&Sons Inc,2003:761.
    [18]CENGEL Y A,BOLES M A.Thermodynamics:an engineering approach[M].4th ed.New York,USA:McGraw-Hill,2002:189.
    [19]HAYNES W M,LIDE D R,BRUNO T J.Handbook of chemistry and physics[M].95th ed.Boca Raton,USA:CRC,2014:1096-1097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700