两种不同入口结构旋风分离器内涡核摆动的对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of Vortex Core Oscillations in Cyclone Separators with Two Different Inlet Structures
  • 作者:高助威 ; 王娟 ; 王江云 ; 毛羽
  • 英文作者:Gao Zhuwei;Wang Juan;Wang Jiangyun;Mao Yu;State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum;
  • 关键词:旋风分离器 ; 入口结构 ; 数值模拟 ; 涡核摆动 ; 偏心距
  • 英文关键词:cyclone separator;;inlet structure;;numerical simulation;;vortex core oscillation;;eccentric distance
  • 中文刊名:HXFY
  • 英文刊名:Chemical Reaction Engineering and Technology
  • 机构:中国石油大学重质油国家重点实验室过程流体过滤与分离技术北京市重点实验室;
  • 出版日期:2018-08-25
  • 出版单位:化学反应工程与工艺
  • 年:2018
  • 期:v.34
  • 基金:国家自然科学基金项目(21106181);; 中国石油大学(北京)科研基金(2462015YQ0303)
  • 语种:中文;
  • 页:HXFY201804002
  • 页数:10
  • CN:04
  • ISSN:33-1087/TQ
  • 分类号:11-20
摘要
为了探究入口结构对旋风分离器内涡核摆动的影响,采用雷诺应力模型(Reynolds stress model,RSM)对两种不同入口结构旋风分离器内旋转流动进行了气相流场的数值模拟。结果表明,切向速度在截面上呈现明显的非轴对称现象,主要表现为等值线分布不对称,零值所在位置与几何中心不重合,零值靠近壁面的一侧,切向速度较大,零值远离壁面的一侧切向速度较小。直切式旋风分离器内部偏心比(|Δr|/D)多在0.025~0.050,而蜗壳式旋风分离器内部偏心比则多在0.000~0.025,偏心程度明显下降。蜗壳式旋风分离器在90~270°截面和180~360°截面上的旋转中心偏移轴线值(|Δx|和|Δy|)的平均值均减小,蜗壳式旋风分离器偏心距(|Δr|)的平均值相对于直切式减小23.5%。
        In order to investigate the influence of the inlet structure on the vortex core oscillation in the cyclone separator, Reynolds stress model(RSM) was used to simulate the gas flow of two cyclones with different inlet structures. The results showed that the tangential velocity presents an obvious non-axisymmetric phenomenon in the section, which was mainly characterized by the asymmetrical contour distribution. The position of the zero value did not coincide with the geometric center. The tangential velocity was large when the zero value was close to the side of the wall surface, and when the zero value was away from the wall surface, the tangential velocity was small. The internal eccentricity ratio |Δr|/D of the cyclone separator with tangential inlet was from 0.025 to 0.050, while the value of |Δr|/D of the cyclone with volute inlet was from 0.000 to 0.025, and the degree of the eccentricity was significantly reduced. Compared to the cyclone with tangential inlet, the average value of rational center offset axis values |Δx| and |Δy| of the volute cyclone in the cross section of 90-270°and 180-360°was also decreased. The average value of the eccentricity(|Δr| was reduced by 23.5% for the cyclone with volute inlet in respect to that with tangential inlet.
引文
[1]Khairy E.Design of a novel gas cyclone vortex finder using the adjoint method[J].Separation and Purification Technology,2015,142:274-286.
    [2]Demir S.A practical model for estimating pressure drop in cyclone separators:an experimental study[J].Powder Technology,2014,268:329-338.
    [3]Song C M,Pei B B,Jiang M T,et al.Numerical analysis of forces exerted on particles in cyclone separators[J].Powder Technology,2016,294:437-448.
    [4]严超宇,吴小林,时铭显.旋风分离器非稳态流场的简化分析[J].流体机械,2002,30(3):18-21.Yan Chaoyu,Wu Xiaolin,Shi Mingxian.Simplified analysis of the unsteady flow field in a cyclone separator[J].Flow Machinery,2002,30(3):18-21.
    [5]Song J F,Wei Y D,Sun G G,et al.Experimental and CFD study of particle deposition on the outer surface of vortex finder of a cyclone separator[J].Chemical Engineering Journal,2017,309:249-262.
    [6]Gu X F,Song J F,Wei Y D.Experimental study of pressure fluctuation in a gas-solid cyclone separator[J].Powder Technology,2016,299:217-225.
    [7]Song J F,Xu D B,Wei Y D.Carbonaceous deposition onto the outer surface of vortex finder of commercial RFCC cyclones and role of gas flow to the buildup of the deposits[J].Chemical Engineering Journal,2016,303:109-122.
    [8]吴小林,熊至宜,姬忠礼,等.旋风分离器旋进涡核的数值模拟[J].化工学报,2007,58(2):383-390.Wu Xiaolin,Xiong Zhiyi,Ji Zhongli,et al.Numerical simulation of precessing vortex core in cyclone separator[J].CIESC Journal,2007,58(2):383-390.
    [9]高翠芝,孙国刚,董瑞倩.旋风分离器旋涡尾端测量及压力特性分析[J].化工学报,2010,61(6):1399-1405.Gao Cuizhi,Sun Guogang,Dong RuiQian.Analysis on location and pressure of vortex end in gas cyclone[J].CIESC Journal,2010,61(6):1399-1405.
    [10]魏耀东,张静,宋健斐,等.旋风分离器自然旋风长的试验研究[J].热能动力工程,2010,25(2):206-209.Wei Yaodong,Zhang Jing,Song Jianfei,et al.Experimental study of natural cyclone length of a cyclone separator[J].Journal of Engineering for Thermal Energy and Power,2010,25(2):206-209.
    [11]Hoffermann A C,Peng W,Dries H,et al.Effect of pressure recovery vanes on the performance of a swirl tube with emphasis on the flow pattern and separation efficiency[J].Energy Fuel,2006,20(4):1691-1697.
    [12]Hoffermann A C,de Jouge R,Arends H,et al.Evidence of the natural vortex length and its effect on the separation efficiency of gas cyclone[J].Filtration&Separation,1995,32(8):799-804.
    [13]Derksen J J,Van den Akker H E A.Simulation of vortex core precession in a reverse-flow cyclone[J].AIChE Journal,2000,46(7):1317-1331.
    [14]Hoekstra A J,Israel A T,Derksen J J,et al.The application of laser diagnostics to cyclonic flow with vortex precession[C]//Proceedings of the 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics,Lisbon,1998:431-435.
    [15]魏耀东,燕辉,时铭显.蜗壳式旋风分离器环形空间流场的研究[J].石油炼制与化工,2000,31(11):46-50.Wei Yaodong,Yan Hui,Shi Mingxian.Study on flow in the annular space of a cyclone separator with a volute inlet[J].Petroleum Processing and Petrochemical,2000,31(11):46-50.
    [16]Wasilewski M.Analysis of the effect of counter-cone location on cyclone separator efficiency[J].Separation and Purification Technology,2017,179:236-247.
    [17]Wasilewski M.Analysis of the effect of temperature and the share of solid and gas phases on the process of separation in a cyclone suspension preheater[J].Separation and Purification Technology,2016,168:114-123.
    [18]Wasilewski M.Multicriteria optimization of first-stage cyclones in the clinker burning system by means of numerical modelling and experimental research[J].Powder Technology,2016,289:143-158.
    [19]高助威,王江云,王娟,等.蜗壳式旋风分离器内部流场空间的涡分析[J].化工学报,2017,68(8):3006-3013.Gao Zhuwei,Wang Jiangyun,Wang Juan,et al.Vortex analysis of flow field of cyclone separator with single volute inlet structure[J].CIESCJournal,2017,68(8):3006-3013.
    [20]高助威,王娟,王江云,等.旋风分离器内涡核摆动的特性研究[J].工程热物理学报,2017,38(12):2610-2618.Gao Zhuwei,Wang Juan,Wang Jiangyun,et al.Study of the characteristics of vortex core oscillation in cyclone separator[J].Journal of Engineering Thermophysics,2017,38(12):2610-2618.
    [21]Safikhani H.Modeling and multi-objective Pareto optimization separators using CFD,ANNS and NSGA algorithm[J].Advanced Powder Technology,2016,27(5):2277-2284.
    [22]Safikhani H,Mehrablan P.Numerical study of flow field in new cyclone separators[J].Powder Technology,2016,27(2):379-387.
    [23]毛羽,庞磊,王小伟,等.旋风分离器内三维紊流场的数值模拟[J].石油炼制与化工,2002,33(2):1-6.Mao Yu,Pang Lei,Wang Xiaowei,et al.Numerical modeling of three-dimension turbulent field in cyclone separator[J].Petroleum Processing and Petrochemical,2002,33(2):1-6.
    [24]Irfan K,Fuat K.CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone[J].International Communications in Heat and Mass Transfer,2007,34(9/10):1119-1126.
    [25]粱邵青,王铖健.旋风分离器流场数值模拟及其涡结构识别[J].煤炭学报,2014,39(1):262-266.Liang Shaoqing,Wang Chenjian.Numerical simulation of the flow field in a cyclone separator and vortex identification[J].Journal of China Coal Society,2014,39(1):262-266.
    [26]孟文,王江云,毛羽,等.排气管直径对旋风分离器非轴对称旋转流场的影响[J].石油学报(石油加工),2015,31(6):1309-1316.Meng Wen,Wang Jiangyun,Mao Yu,et al.Effect of vortex finder diameter on non-axisymmetric rotating flow field in cyclone separator[J].Acta Petrolei Sinica(Petroleum Processing Section),2015,31(6):1309-1316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700