用户名: 密码: 验证码:
基于Li/SF_6能源的新型UUV动力系统热力性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermodynamic Performance Analysis of a New Type of UUV Power System Based on Li/SF_6 Energy
  • 作者:白杰 ; 党建军 ; 曹蕾蕾
  • 英文作者:BAI Jie;DANG Jian-jun;CAO Lei-lei;Key Laboratory of Road Construction Technology and Equipment of Ministry of Education,Chang'an Univerisity;School of Marine Science and Technology, Northwestern Polytechnical University;
  • 关键词:无人水下航行器 ; Li/SF_6能源 ; 动力系统 ; 热力性能
  • 英文关键词:unmanned undersea vehicle(UUV);;Li/SF_6 energy;;power system;;thermodynamic performance
  • 中文刊名:YLJS
  • 英文刊名:Journal of Unmanned Undersea Systems
  • 机构:长安大学道路施工技术与装备教育部重点实验室;西北工业大学航海学院;
  • 出版日期:2019-04-15
  • 出版单位:水下无人系统学报
  • 年:2019
  • 期:v.27;No.131
  • 基金:陕西省自然科学基金资助(2018JM5108);; 中央高校基本科研业务费资助(300102258102)
  • 语种:中文;
  • 页:YLJS201902016
  • 页数:5
  • CN:02
  • ISSN:61-1509/TJ
  • 分类号:102-106
摘要
为适应无人水下航行器(UUV)长航时、远航程、大航深等应用需求,提出了一种以Li/SF_6为能源的新型UUV热电联合动力系统构型方案。该系统采用朗肯循环,燃料能量密度可达600 Wh/kg,是现有电池的3倍。文中建立了工质参数对系统性能影响规律的求解算法,分析了蒸发器出口温度、压力和冷凝器压力对系统性能的影响。结果表明:在研究范围内,蒸发器出口温度每增加100 K系统效率增加0.8%;蒸发器压力每增加1 MPa系统效率增加0.5%;冷凝器压力每降低0.01 MPa系统效率增加0.2%。该方案可为现有UUV供能不足提供新的解决途径,文中所做研究结论可为UUV动力系统设计提供参考。
        To develop an unmanned undersea vehicle(UUV) with the performances of long endurance, long range and deep depth, a new thermoelectric power system using Li/SF_6 as energy is proposed. The system adopts Rankine cycle,and its fuel's energy density can reach 600 Wh/kg, which is three times higher than that of the current battery. The solution algorithm for the working medium parameters' effects on the system performance is established, and then the influences of evaporator outlet temperature, pressure, and condenser pressure on the system performance are analyzed. The results show that, within the scope of certain parameters, 0.8% increase in the system efficiency is gained for every 100 K increase in the evaporator outlet temperature; the system efficiency rises by 0.5% for every 1 MPa increase in the evaporator pressure; and the system efficiency rises by 0.2% for every 0.01 MPa decrease in the condenser pressure.This system gives a new solution to enhancing UUV energy supply, and the obtained conclusions may provide a reference for the power system design of an UUV.
引文
[1]钟宏伟.国外无人水下航行器装备与技术现状及展望[J].水下无人系统学报,2017,25(4):215-225.Zhong Hong-wei.Review and Prospect of Equipment and Techniques for Unmanned Undersea Vehicle in Foreign Countries[J].Journal of Unmanned Undersea Systems,2017,25(4):215-225.
    [2]Wang X,Shang J,Luo Z,et al.Reviews of Power Systems and Environmental Energy Conversion for Unmanned Underwater Vehicles[J].Renewable&Sustainable Energy Reviews,2012,16(4):1958-1970.
    [3]Waters D F,Cadou C P.Modeling a Hybrid Rankine-cycle/fuel-cell Underwater Propulsion System Based on Aluminum-water Combustion[J].Journal of Power Sources,2013,221(1):272-283.
    [4]Waters D F,Cadou C P.Estimating the Neutrally Buoyant Energy Density of a Rankine-cycle/fuel-cell Underwater Propulsion System[J].Journal of Power Sources,2014,248(4):714-720.
    [5]聂卫东,马玱,张博,等.浅析美军水下无人作战系统及其关键技术[J].水下无人系统学报,2017,25(5):310-318.Nie Wei-dong,Ma Ling,Zhang Bo,et al.A Brief Analysis of United States Unmanned Underwater Combat System[J].Journal of Unmanned Undersea Systems,2017,25(5):310-318.
    [6]钱东,赵江,杨芸.军用UUV发展方向与趋势(上)--美军用无人系统发展规划分析解读[J].水下无人系统学报,2017,25(2):1-30.Qian Dong,Zhao Jiang,Yang Yun.Development Trend of Military UUV(Ⅰ):a Review of U.S.Military Unmanned System Development Plan[J].Journal of Unmanned Undersea Systems,2017,25(2):1-30.
    [7]钱东,赵江,杨芸.军用UUV发展方向与趋势(下)--美军用无人系统发展规划分析解读[J].水下无人系统学报,2017,25(3):107-150.Qian Dong,Zhao Jiang,Yang Yun.Development Trend of Military UUV(Ⅱ):a Review of U.S.Military Unmanned System Development Plan[J].Journal of Unmanned Undersea Systems,2017,25(3):107-150.
    [8]黄庆,卜建杰,郑邯勇.Li/SF6热源在鱼雷和UUV推迚系统中的应用[J].舰船科学技术,2006,28(2):6-10.Huang Qing,Bu Jian-jie,Zheng Han-yong.The Application of Li/SF6 Heat Source in the Torpedo and the UUVPropulsion Systems[J].Ship Science&Technology,2006,28(2):6-10.
    [9]张文群,张振山.应用Gibbs自由能最小法研究Li/SF6气液浸没燃烧反应[J].兵工学报,2005,26(6):812-815.Zhang Wen-qun,Zhang Zhen-shan.Study on Li/SF6Gas-liquid Fuel Combustion with the Minimum of Gibbs Energy[J].Acta Armamentarii,2005,26(6):812-815.
    [10]Dahikar S K,Gulawani S S,Joshi J B,et al.Effect of Nozzle Diameter and Its Orientation on the Flow Pattern and Plume Dimensions in Gas-Liquid Jet Reactors[J].Chemical Engineering Science,2007,62(24):7471-7483.
    [11]Gulawani S S,Dahikar S K,Joshi J B,et al.CFD Simulation of Flow Pattern and Plume Dimensions in Submerged Condensation and Reactive Gas Jets into a Liquid Bath[J].Chemical Engineering Science,2008,63(9):2420-2435.
    [12]Deshpande S S,Mathpati C S,Gulawani S S,et al.Effect of Flow Structures on Heat Transfer in Single and Multiphase Jet Reactors[J].Indengchemres,2009,48(21):9428-9440.
    [13]Lyu H Y,Chen L D.Numerical Modeling of Buoyant Ethanol-air Wick Diffusion Flames[J].Combustion&Flame,1991,87(2):169-181.
    [14]刘晓瑜.Li/SF6表面喷射反应器内燃烧流场数值研究[D].哈尔滨:哈尔滨工程大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700