基于树形自适应网格的旋流液膜雾化过程仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation on Swirl Liquid Sheet Spray Process Based on Octree Adaptive Mesh Refinement
  • 作者:杨国华 ; 王凯 ; 张民庆 ; 周立新
  • 英文作者:YANG Guo-hua;WANG Kai;ZHANG Min-qing;ZHOU Li-xin;College of Astronautics,Northwestern Polytechnical University;Key Laboratory for Liquid Rocket Engine Technology,Xi'an Aerospace Propulsion Institute;China Academy of Aerospace Liquid Propulsion Technology;
  • 关键词:旋流液膜 ; 雾化破碎过程 ; 自适应网格加密技术 ; Gerris
  • 英文关键词:Swirl liquid sheet;;Spray and breakup process;;Adaptive mesh refinement technique;;Gerris
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西北工业大学航天学院;西安航天动力研究所液体火箭发动机技术重点实验室;航天推进技术研究院;
  • 出版日期:2018-01-17 14:26
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.249
  • 语种:中文;
  • 页:TJJS201803009
  • 页数:9
  • CN:03
  • ISSN:11-1813/V
  • 分类号:81-89
摘要
为实现旋流液膜雾化过程的数值精确求解,基于Gerris采用的自适应网格技术和VOF方法,建立了一种模拟旋流液膜雾化过程的数值方法,分析了雾化破碎过程及三维雾场特征。研究结果表明:Gerris能够逼真地展示旋流液膜破碎成液丝液丝进一步破碎成液滴全过程的细节特征,雾化破碎过程图像与实验拍摄的基本吻合;通过统计分析计算的带旋转速度的直射流雾化过程全场液滴粒径空间分布,与文献中实验测量值也吻合较好,分布曲线峰值对应的液滴直径的差值为1.8μm,相对误差为13.8%,表明建立的计算方法具有较高的准确性。另外,通过对旋流液膜破碎过程的精细仿真,对其有了更清楚的认识,液膜雾化过程中存在二次雾化现象,液丝在运动过程中受到气体力和表面张力的作用,开始断裂形成大液滴或液团,随着进一步运动收缩破碎成小液滴,液滴形状渐渐由不规则的柱形变成类球形。带旋转速度的直射流和空心旋流式锥形液膜的液滴空间分布存在不同,前者液滴在锥形区域内都有分布,而后者液滴只分布在锥形液膜两侧的环形区域。
        In order to realize accurately numerical simulation of swirl liquid sheet spray process,the numerical method based on adaptive mesh refinement technique and VOF method in Gerris was established,which could simulate the spray process of swirl liquid sheet. The spray breakup process and 3 D spray field characteristics were analyzed. The results show that the simulation of the breakup process of swirl liquid sheet in Gerris is very refined. The characteristics of the whole spray process are captured accurately,which consists of liquid sheet breaking up and disintegrating into ligaments or droplets. The computational results are basically in good agreement with the breakup process images of conical liquid sheet photographed in experiment. In the jet injector with rotational velocity,the spatial distribution of the droplet simulated in this article is also in good agreement with the experimental result in the literature by using statistical and analytical methods. The difference between the peak value of the distribution curves corresponding to the droplets diameters is 1.8μm,and the relative error is 13.8%,which shows that the numerical method established in this article is relatively accurate. In addition,the breakup process of swirl liquid sheet is understood more clearly by using refined simulation. The second spray phenomenon exits in the liquid sheet spray process. When moving downward,the ligaments start to disintegrate into many big droplets or liquid masses because of the effect of gas strength and surface tension. With big droplets or liquid masses further shrinking and breaking into small droplets,the shapes of droplets change gradually from irregular cylinder to approximate sphere. In the jet injector with rotational velocity and the hollow conical liquid sheet,the spatial distribution of droplets is different. The former is more uniform distribution in the cone area,while the latter is only distributed in the annular region located on both sides of the conical liquid sheet.
引文
[1]王成军,陈海耿,张宝诚.双路离心式喷嘴的实验与数值模拟[J].工程热物理学报,2010,31(10):1797-1799.
    [2]York J L,Stubbs H F,Tek M R.The Mechanism of Disintegration of Liquid Sheets[J].Transactions of ASME,1953,75:1279-1286.
    [3]Squire H B.Investigation of the Instability of a Moving Liquid Film[J].British Journal of Applied Physics,1953,4(6):167-169.
    [4]Fraser R P.Liquid Fuel Atomization[J].Symposium(International)on Combustion,1957,6(1):687-701.
    [5]Youngbin Yoon,In-Seuk Jeung.Effects of Ambient Gas Pressure on the Breakup of Sprays in Like-Doublet and Swirl Coaxial Injectors[C].Istanbul:International Symposium on Energy Conversion Fundamentals,2004.
    [6]Loustalan Paul W,Davy Martin H,Williams Paul A.Experimental Investigation into the Liquid Sheet BreakUp of High-Pressure DISI Swirl Atomizers[C].Warrendale,PA:SAE International,2003.
    [7]YUE Ming,XU Hang,YANG Mao-lin,et al.Study on Breakup of Conical Liquid Sheet under Varying Flow Conditions[J].Chinese Journal of Aeronautics,2003,16(1):12-14
    [8]刘娟,李清廉,刘卫东,等.离心式喷嘴液膜破碎过程实验[J].推进技术,2011,32(4):539-543.(LIU Juan,LI Qing-lian,LIU Wei-dong,et al.Experiment on Liquid Sheet Breakup Process of Pressure Swirl Injector[J].Journal of Propulsion Technology,2011,32(4):539-543.)
    [9]岳明,徐茂林.锥形液膜空间稳定性分析[J].航空动力学报,2003,18(6):794-798.
    [10]徐让书,年帅奇,牛玲,等.离心式喷嘴内部流动与液膜初始破碎的耦合模拟[J].沈阳工业大学学报,2011,33(6):661-666.
    [11]刘娟.旋转锥形液膜破碎过程实验与仿真研究[D].长沙:国防科学技术大学,2012.
    [12]Olivier Desjardins,Mc Caslin Jeremy O,Mark Owkes,et al.Direct Numerical and Large-Eddy Simulation of Primary Atomization in Complex Geometries[J].Atomization and Sprays,2013,23(11):1001-1048.
    [13]Ma Dong-Jun,Chen Xiao-Dong,Prashant Khare,et al.Atomization Patterns and Breakup Characteristics of Liquid Sheets Formed by Two Impinging Jets[R].AIAA2011-97.
    [14]Xiaodong Chen,Dongjun Ma,Vigor Yang,et al.HighFidelity Simulations of Impinging Jet Atomization[J].Atomization and Sprays,2013,23(12):1079-1101.
    [15]Xiaodong Chen,Dongjun Ma,Vigor Yang.Mechanism Study of Impact Wave in Impinging Jets Atomization[R].AIAA 2012-1089.
    [16]李佳楠,费俊,杨卫东,等.直流互击式喷注单元雾化特性准直接数值模拟[J].推进技术,2016,37(4):713-725.(LI Jia-nan,FEI Jun,YANG Weidong,et al.Quasi-Direct Numerical Simulation on Atomization Characteristics of Impinging Jets Injector[J].Journal of Propulsion Technology,2016,37(4):713-725.)
    [17]Daniel Fuster,Anne Bagué,Stéphane Popinet,et al.Simulation of Primary Atomization with an Octree Adaptive Mesh Refinement and VOF Method[J].International Journal of Multiphase Flow,2009,35(6):550-565.
    [18]阎超,于剑,徐晶磊,等.CFD模拟方法的发展成就与展望[J].力学进展,2011,41(5):562-589.
    [19]Mehravaran K.Direct Simulation of Primary Atomization in Moderate-Speed Diesel Fuel Injection[J].International Journal of Materials,Mechanics and Manufacturing,2013,1(2):207-209.
    [20]Stéphane Popinet.An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flows[J].Journal of Computational Physics,2009,228(16):5838-5866.
    [21]Shahriar Afkhami,Yuriko Renardy.A Volume-of-Fluid Formulation for the Study of Co-Flowing Fluids Governed by the Hele-Shaw Equations[J].Physics of Fluids,2013,25(8):0820011-0820019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700