基于架间行走机器人的液压支架直线度测量方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A straightness measurement method of hydraulic support based on inter supports walking robot
  • 作者:白晋铭 ; 王然风 ; 付翔
  • 英文作者:BAI Jinming;WANG Ranfeng;FU Xiang;College of Mining Engineering,Taiyuan University of Technology;
  • 关键词:煤炭开采 ; 液压支架直线度测量 ; 支撑掩护式支架 ; 架间行走机器人 ; 位置偏移量 ; 角度偏移量 ; 激光传感器
  • 英文关键词:coal mining;;straightness measurement of hydraulic support;;chock-shield hydraulic support;;inter supports walking robot;;position offset;;angle offset;;laser sensor
  • 中文刊名:MKZD
  • 英文刊名:Industry and Mine Automation
  • 机构:太原理工大学矿业工程学院;
  • 出版日期:2018-12-28 10:25
  • 出版单位:工矿自动化
  • 年:2019
  • 期:v.45;No.274
  • 基金:国家自然科学基金资助项目(51404167)
  • 语种:中文;
  • 页:MKZD201901009
  • 页数:7
  • CN:01
  • ISSN:32-1627/TP
  • 分类号:48-54
摘要
针对目前液压支架直线度测量方法存在测量维度低、误差较大、易受粉尘影响等问题,提出了一种基于架间行走机器人的液压支架直线度测量方法。该方法主要用于支撑掩护式支架,在架间行走机器人上布置传感器,用于直接测量液压支架底座的横向偏移、纵向偏移、横向斜角和纵向倾角等多维位置偏移信息,从而通过支架位置偏移量表征液压支架的直线度信息。试验结果表明,相邻两架偏移误差值在0.2cm以内,相邻两架角度误差在10′以内;当模型增加到100架支架,依据常规液压支架1.5m的中心距计算,在工作面长度为150m时,预计会产生位置偏移累计误差10cm,角度累计误差8°20′,对于长度不超过150m的短距离综采工作面,这个累计误差在可接受的范围内,可满足液压支架直线度的测量需求。相比于传统的一维测量信息,该方法通过4维位置偏移信息可为液压支架群的控制提供参考。
        In view of the problems of low measurement dimension,large error and easy to be affected by dust in current straightness measurement method of hydraulic support,a straightness measurement method of hydraulic support based on inter supports walking robot was proposed.This measurement method is mainly used to chock-shield hydraulic support,sensors are arranged on the inter supports walking robot,which is used for directly measuring multi-dimensional position offset information such as transverse offset,longitudinal offset,transverse bevel angle and longitudinal dip angle of hydraulic support base,then the straightness information of the hydraulic support is indicated by the support position offset.The experimental results show that the deviation error of the two adjacent supports is within 0.2 cm and the angle error of the two adjacent supports is within 10′.When the experimental supports model increased to 100 units,the accumulative error of position offset is expected to 10 cm,angle cumulative error is 8°20′according to center distance of 1.5 mfor conventional hydraulic support on the working face length of 150 m.For length of fully mechanized working face is less than 150 m,the accumulated error is in the acceptable range,can meet measurement demand of hydraulic support straightness.Compared with the traditional one-dimensional measurement information,the method canprovide more detailed reference for the control of hydraulic support group through the four-dimensional position offset information.
引文
[1]李怀志,张崇一,辛超.薄煤层工作面液压支架关键技术研究[J].煤矿机械,2016,37(6):53-55.LI Huaizhi,ZHANG Chongyi,XIN Chao.Research on key technologies of hydraulic support in thin coal seam face[J].Coal Mine Machinery,2016,37(6):53-55.
    [2]方新秋,何杰,郭敏江,等.煤矿无人工作面开采技术研究[J].科技导报,2008(9):56-61.FANG Xinqiu,HE Jie,GUO Minjiang,et al.Study on unmanned workface mining technology[J].Science&Technology Review,2008(9):56-61.
    [3]宋宏雷,张卫东,位建峰.薄煤层液压支架定线移架装置研究与应用[J].煤矿现代化,2013(增刊1):112-113.
    [4]胡波,廉自生.基于支持向量机和遗传算法的液压支架调直系统研究[J].煤矿机械,2014,35(10):39-41.HU Bo,LIAN Zisheng.Study on hydraulic support straightening system based on support vector machine and genetic algorithm[J].Coal Mine Machinery,2014,35(10):39-41.
    [5]张斌,方新秋,邹永洺,等.基于陀螺仪和里程计的无人工作面采煤机自主定位系统[J].矿山机械,2010,38(9):10-13.ZHANG Bin,FANG Xinqiu,ZOU Yongming,et al.Auto-positioning system of shearer operating on manless working face based on gyroscope and odometer.[J].Mining&Processing Equipment,2010,38(9):10-13.
    [6]陈令国,赵江华,梅雪峰.综采工作面刮板输送机的自动化、智能化控制技术[J].工矿自动化,2011,37(12):24-26.CHEN Lingguo,ZHAO Jianghua,MEI Xuefeng.Automation and intelligent control technologies of scraper conveyor of fully-mechanized face[J].Industry and Mine Automation,2011,37(12):24-26.
    [7]牛剑峰.综采工作面直线度控制系统研究[J].工矿自动化2015,41(5):5-8.NIU Jianfeng.Research of straightness control system of fully-mechanized coal mining face[J].Industry and Mine Automation,2015,41(5):5-8.
    [8]权宁,许忱,王忠宾.液压支架控制系统的优化[J].液压与气动,2012(4):99-100.QUANNing, XUChen, WANGZhongbin.Optimization on control system of hydraulic support[J].Chinese Hydraulics&Pneumatics,2012(4):99-100.
    [9]张坤,廉自生.液压支架姿态角度测量系统[J].工矿自动化,2017,43(5):40-45.ZHANG Kun, LIANZisheng. Attitudeangle measuring system of hydraulic support[J].Industry and Mine Automation,2017,43(5):40-45.
    [10]朱殿瑞,廉自生,贺志凯.掩护式液压支架姿态分析[J].矿山机械,2012,40(3):16-19.ZHU Dianrui,LIAN Zisheng,HE Zhikai.Analysis of postures of shield hydraulic support[J].Mining&Processing Equipment,2012,40(3):16-19.
    [11]谢自强,葛为民,王肖锋.基于线性CCD的新型智能循迹机器人的系统设计[J].机床与液压,2017,45(9):8-13.XIE Ziqiang,GE Weimin,WANG Xiaofeng.Design of a novel intelligent tracking robot system based on linear CCD[J].Machine Tool&Hydraulics,2017,45(9):8-13.
    [12]周柱.基于STM32的智能小车研究[D].成都:西南交通大学,2011.
    [13]谢志鹏.基于ARM的激光扫描控制系统设计[D].北京:中国科学院研究生院(空间科学与应用研究中心),2008.
    [14]苏燕,徐艳华.基于单片机的激光测距系统设计[J].激光杂志,2017,38(9):128-131.SU Yan,XU Yanhua.Design of laser range system based on single chip microcomputer[J].Laser Journal,2017,38(9):128-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700