用户名: 密码: 验证码:
单喷嘴模型发动机纵向高频燃烧不稳定性实验分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental analysis on the longitudinal high frequency combustion instability of a single-element model engine
  • 作者:王迪 ; 聂万胜 ; 周思引 ; 王海青 ; 苏凌宇
  • 英文作者:Wang Di;Nie Wansheng;Zhou Siyin;Wang Haiqing;Su Lingyu;Department of Postgraduate School,Space Engineering University;Department of Space Science and Technology,Space Engineering University;
  • 关键词:单喷嘴模型发动机 ; 纵向高频燃烧不稳定 ; 燃烧室长度 ; 缩进长度 ; 声学频率
  • 英文关键词:single-element model engine;;longitudinal high frequency combustion insatiability;;combustion chamber length;;indentation length;;acoustic frequency
  • 中文刊名:LTLC
  • 英文刊名:Journal of Experiments in Fluid Mechanics
  • 机构:航天工程大学研究生院;航天工程大学宇航科学与技术系;
  • 出版日期:2018-04-15
  • 出版单位:实验流体力学
  • 年:2018
  • 期:v.32;No.142
  • 基金:国家自然科学基金(91441123)
  • 语种:中文;
  • 页:LTLC201802003
  • 页数:7
  • CN:02
  • ISSN:11-5266/V
  • 分类号:20-25+75
摘要
为掌握喷嘴缩进长度和燃烧室长度对气氧/煤油火箭发动机高频燃烧不稳定性的影响规律,设计并开展了单喷嘴模型发动机燃烧实验。实验选用了气液同轴离心式单喷嘴,采用中心供应氧气,液体煤油经切向孔沿轴向旋转进入喷嘴的形式,为测试燃烧稳定性,燃烧室和喷嘴缩进的长度分别作为实验变量,利用高频压力传感器采集数据,基于压力信号对实验结果,尤其是呈现的纵向高频燃烧不稳定性现象进行了细致地研究。结果表明:在本文研究条件下,随着缩进长度的增加,对纵向高频燃烧不稳定性产生阻尼作用,但不会消除纵向高频燃烧不稳定。燃烧室的长度在516和356mm之间存在某个值,使得喷嘴缩进长度对燃烧稳定性影响可以忽略。随着燃烧室长度的增加,一阶纵向声学频率逐渐减小,而幅值逐渐增强。出现这些现象的原因是燃烧过程压力振荡与声波存在相位差。此外,燃烧室长度对纵向高频燃烧不稳定性的影响比缩进长度更明显。
        In order to understand the influence of injector indentation length and combustion chamber length on high frequency combustion instability of oxygen/kerosene rocket engine,the combustion experiment of single-element model engine was designed and carried out.The gas-liquid coaxial centrifugal single-element was used in the experiment.In order to test the combustion stability,the length of the combustion chamber and that of the injector were used as experimental variables,and the data were collected by high frequency pressure sensor,using the central supply of oxygen and the axial rotation of liquid kerosene through the tangential hole into the injector.Based on the pressure signal,the experimental results,especially the longitudinal high frequency combustion instability,are studied in detail.The results show that:under the conditions studied in this paper,with the increase of the indentation length,the longitudinal high frequency combustion instability is damped,but the longitudinal high frequency combustion instability is not eliminated.The length of combustion chamber is between 516 mm and 356 mm.The effect of the injector indentation length on the combustion stability is negligible.With the increase of combustion chamber length,the first order longitudinal acoustic frequency decreases gradually.These phenomena are due to the phase difference between the combustion pressure oscillation and the acoustic wave.In addition,the influence of the combustion chamber length on longitudinal high frequency combustion instability is more obvious than that of the indentation length.
引文
[1]Shipley K J,Anderson W E.A computational study of transverse combustion instability mechanism[R].AIAA-2014-3680,2014.
    [2]Soller S,Wagner R,Kau H P,et al.Combustion stability characteristics of coax-swirl-injectors for oxygen/kerosene[R].AIAA-2007-5563,2007.
    [3]Soller S,Wagner R,Kau H P,et al.Characterisation of main chamber injectors for GOX/Kerosene in a single element rocket combustor[R].AIAA-2005-3750,2005.
    [4]Miller K,Sisco J,Nugent N,et al.Experimental study of combustion instabilities in a single-element coaxial swirl injector[R].AIAA-2005-4298,2005.
    [5]Miller K,Sisco J,Nugent N,et al.Combustion instability with a single-element swirl injector[J].Journal of Propulsion and Power,2007,23(5):1102-1112.
    [6]Sisco J C.Measurement and analysis of an unstable model rocket combustion[D].West Lafayette:Purdue University,2007.
    [7]Yu Y,Sisco J C,Rosen S,et al.Spontaneous longitudinal combustion instability in a continuously variable resonance combustor[J].Journal of Propulsion and Power,2012,28(5):876-886.
    [8]王枫,李龙飞,张贵田.液氧煤油补燃发动机喷注器高频燃烧不稳定性的试验研究[J].宇航学报,2012,33(2):260-264.Wang F,Li L F,Zhang G T.Experimental study on high frequency influence combustion instability with coaxial injector of staged combustion LOX/kerosene rocket engine[J].Journal of Astronautics,2012,33(2):260-264.
    [9]王枫,李龙飞,张贵田.喷嘴结构对液氧煤油火箭发动机高频燃烧不稳定性的影响[J].实验力学,2012,27(2):178-182.Wang F,Li L F,Zhang G T.Influence of geometrical structure of coaxial injector on high-frequency combustion instability for staged combustion LOX/kerosene rocket engine[J].Journal of Experimental Mechanics,2012,27(2):178-182.
    [10]薛帅杰,杨岸龙,杨伟东,等.煤油同轴喷嘴超临界燃烧与火焰特性实验研究[J].推进技术,2015,36(9):1281-1287.Xue S J,Yang A L,Yang W D,et al.Experimental investigation on kerosene supercritical combustion and flame of a coaxial injector[J].Journal of Propulsion Technology,2015,36(9):1281-1287.
    [11]张昊,朱民.热声耦合振荡燃烧的实验研究与分析[J].推进技术,2010,21(6):730-744.Zhang H,Zhu M.Experimental study and analysis of thermo-acoustic instabilities in natural gas premixed flames[J].Journal of Propulsion Technology,2010,21(6):730-744.
    [12]李国能,周昊,李时宇,等.化学当量比对旋流燃烧器热声不稳定特性的影响[J].中国电机工程学报,2008,28(8):18-23.Li G N,Zhou H,Li S Y,et al.Influence of equivalence ratio on characteristics of thermoacoustic instability in a swirl combustor[J].Proceedings of the CSEE,2008,28(8):18-23.
    [13]潘宏刚,艾延廷.航空发动机燃烧室模型热声耦合研究[J].科技传播,2010,(11):98.
    [14]聂万胜,丰松江,解庆纷,等.液体火箭燃烧不稳定性主动控制数值仿真[J].工程热物理学报,2008,29(7):1253-1256.Nie W S,Feng S J,Xie Q F,et al.Numerical simulation of liquid rocket combustion instability active control[J].Journal of Engineering Thermophysics,2008,29(7):1253-1256.
    [15]丰松江.新型液体火箭发动机燃烧过程及其应用研究[D].北京:装备学院,2010.Feng S J.Study of new-style liquid rocket engine’combustion process and application[D].Beijing:Equipment Academy,2010.
    [16]程钰锋,聂万胜,丰松江.氢氧火箭发动机不稳定燃烧数值研究[J].装备指挥技术学院学报,2009,20(4):69-73.Cheng Y F,Nie W S,Feng S J.Numerical simulation of combustion instability of a LOX/GH2rocket engine[J].Journal of the Academy of Equipment Command&Technology,2009,20(4):69-73.
    [17]程钰锋.氢氧火箭发动机喷雾燃烧及其燃烧稳定性数值研究[D].北京:装备学院,2009.
    [18]冯伟,聂万胜,李斌,等.模型燃烧室内不稳定燃烧发展过程的数值分析[J].北京航空航天大学学报,2016,42(6):1195-1202.Feng W,Nie W S,Li B,et al.Numerical analysis of unstable combustion developing process in model combustor[J].Journal of Beijing University of Aeronautics and Astronautics,2016,42(6):1195-1202.
    [19]Harrje D T,Reardon F H.液体推进剂火箭发动机不稳定燃烧[M].朱宁昌,张宝炯,译.北京:国防工业出版社,1980.
    [20]B.Γ.Базаров.液体喷嘴动力学[M].任汉芬,孙纪国,译.北京:航天工业总公司第11研究所,1997.
    [21]Yang V,Anderson W E.Liquid rocket engine combustion instability[M].Progress in Astronautics and Aeronautics,1995.
    [22]安红辉.模型发动机燃烧不稳定性若干影响因素及其试验研究[D].北京:装备学院.2017.An H H.Research on some influencing factors and experiment of combustion instability in the model of engine[D].Beijing:The Academy of Equipment,2017.
    [23]张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005.
    [24]周进,胡小平,黄玉辉,等.液体火箭发动机气液同轴式喷嘴混合特性实验研究[J].国防科技大学学报,1997,19(4):9-13.Zhou J,Hu X P,Huang Y H,et al.A study of the mixing characteristics of gas-liquid coaxial swirling injector of liquid rocket engine[J].Journal of National University of Defense Technology,1997,19(4):9-13.
    [25]孙纪国,庄逢辰,王珏.缩进深度对同轴式喷嘴流量特性的影响[J].推进技术,2003,24(5):452-455.Sun J G,Zhuang F C,Wang Y.Effects of recess on coaxial injector’s discharge coefficient and performance[J].Journal of Propulsion Technology,2003,24(5):452-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700