Synergetic effect of BiOCl/Bi_(12)O_(17)Cl_2 and MoS_2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synergetic effect of BiOCl/Bi_(12)O_(17)Cl_2 and MoS_2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway
  • 作者:Wen-Dong ; Zhang ; Xing-An ; Dong ; Yi ; Liang ; Rui ; Liu ; Yan-Juan ; Sun ; Fan ; Dong
  • 英文作者:Wen-Dong Zhang;Xing-An Dong;Yi Liang;Rui Liu;Yan-Juan Sun;Fan Dong;Chongqing Key Laboratory of Inorganic Functional Materials,Department of Scientific Research Management, Chongqing Normal University;Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University;Chongqing Key Laboratory of Earth Surface Processes and Environmental Remote Sensing in Three Gorges Reservoir Area,Chongqing Normal University;Research Center for Environmental Science and Technology,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China;
  • 英文关键词:Synergetic effect;;BiOCl/Bi_(12)O_(17)Cl_2;;MoS_2;;In situ DRIFTS investigation;;NO;;Oxidation pathway
  • 中文刊名:XYJS
  • 英文刊名:稀有金属(英文版)
  • 机构:Chongqing Key Laboratory of Inorganic Functional Materials,Department of Scientific Research Management, Chongqing Normal University;Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University;Chongqing Key Laboratory of Earth Surface Processes and Environmental Remote Sensing in Three Gorges Reservoir Area,Chongqing Normal University;Research Center for Environmental Science and Technology,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China;
  • 出版日期:2019-05-15
  • 出版单位:Rare Metals
  • 年:2019
  • 期:v.38
  • 基金:financially supported by the National Natural Science Foundation of China (Nos. 51708078 and 41801063);; the Natural Science Foundation of Chongqing (No. 2018jcyjA1040)
  • 语种:英文;
  • 页:XYJS201905011
  • 页数:9
  • CN:05
  • ISSN:11-2112/TF
  • 分类号:81-89
摘要
The BiOCl/Bi_(12) O_(17) Cl_2@MoS_2(BOC-MS)composites were successfully synthesized by a facile method at room temperature. The physicochemical properties of the as-obtained samples were characterized by X-ray diffractometer(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), ultraviolet–visible diffuse reflection spectra(UV–Vis DRS), photoluminescence(PL), Brunauer–Emmett–Teller–Barrett–Joyner–Halenda(BET–BJH), and electron spin resonance(ESR) in detail.Moreover, the in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) was applied to elucidate the adsorption and photocatalytic reaction mechanism. The optimized BOC-MS-1.0 composites exhibited excellent visible light photocatalytic capability(51.1%) and photochemical stability for removal of NO. Based on the DMPOESR spin trapping, the áO_2-radicals and áOH radicals were identified as the main active species generated from BOCMS-1.0 under visible light irradiation. The enhanced photocatalytic performance can be ascribed to the positive synergetic effect of the MoS_2 and the effective carrier separation ability.
        The BiOCl/Bi_(12) O_(17) Cl_2@MoS_2(BOC-MS)composites were successfully synthesized by a facile method at room temperature. The physicochemical properties of the as-obtained samples were characterized by X-ray diffractometer(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), ultraviolet–visible diffuse reflection spectra(UV–Vis DRS), photoluminescence(PL), Brunauer–Emmett–Teller–Barrett–Joyner–Halenda(BET–BJH), and electron spin resonance(ESR) in detail.Moreover, the in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) was applied to elucidate the adsorption and photocatalytic reaction mechanism. The optimized BOC-MS-1.0 composites exhibited excellent visible light photocatalytic capability(51.1%) and photochemical stability for removal of NO. Based on the DMPOESR spin trapping, the áO_2-radicals and áOH radicals were identified as the main active species generated from BOCMS-1.0 under visible light irradiation. The enhanced photocatalytic performance can be ascribed to the positive synergetic effect of the MoS_2 and the effective carrier separation ability.
引文
[1] Khodayari A, Vitt F, Phoenix D, Wuebbles DJ. The impact of NOxemissions from lightning on the production of aviation-induced ozone. Atmos Environ. 2018;187(5):410.
    [2] Zhou Z, Harold MP, Luss D. NOxreduction on Ceria:impact of lean-rich cycling. Appl Catal B Environ. 2019;240(1):79.
    [3] Guan Z, Ren J, Chen D, Hong L, Li F, Wang D, Ouyang Y, Gao Y. NOxremoval by non-thermal plasma at low temperatures with amino groups additives. Korean J Chem Eng. 2016;33(11):3102.
    [4] Zheng M, Li C, Liu S, Gui M, Ni J. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2in nitrogen oxides(NOx)removal from flue gas. J Hazard Mater.2016;318(7):571.
    [5] Miao H, Yang J, Wei Y, Li W, Zhu Y. Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Appl Catal B Environ. 2018;239(12):61.
    [6] Wang J, Wang C, Zhu S, Luo X, Li Z, Xu L. Benzohydroxamic acid photodegradation by prepared Ce modified TiO2. Chin J Rare Metals. 2018;42(4):393.
    [7] Ran J, Zhang J, Yu J, Jaroniec M, Qiao S. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev. 2014;43(22):7787.
    [8] Dong F, Xiong T, Sun Y, Lu L, Zhang Y, Zhang H, Huang H,Zhou Y, Wu Z. Exploring the photocatalysis mechanism on insulators. Appl Catal B Environ. 2017;219(12):450.
    [9] Bi C, Cao J, Lina H, Wang Y, Chen S. Enhanced photocatalytic activity of Bi12O17Cl2through loading Pt quantum dots as a highly efficient electron capturer. Appl Catal B Environ. 2016;195(10):132.
    [10] He G, Xing C, Xiao X, Hu R, Zuo X, Nan J. Facile synthesis of flower-like Bi12O17Cl2/b-Bi2O3composites with enhanced visible light photocatalytic performance for the degradation of4-tert-butylphenol. Appl Catal B Environ. 2015;170–171(7):1.
    [11] Huang H, Xiao K, He Y, Zhang T, Dong F, Du X, Zhang Y.In situ assembly of BiOI@Bi12O17C l2p–n junction:charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI{001}active facets for robust and nonselective photocatalysis. Appl Catal B Environ. 2016;199(11):75.
    [12] Xiao X, Jiang J, Zhang L. Selective oxidation of benzyl alcohol into benzaldehyde over semiconductors under visible light:the case of Bi12O17Cl2nanobelts. Appl Catal B Environ. 2013;141–143(5):487.
    [13] Zhang W, Dong X, Jia B, Zhong J, Sun Y, Dong F. 2D BiOCl/Bi12O17Cl2nanojunction:enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation. Appl Surf Sci.2018;430(2):571.
    [14] Zhang W, Dong X, Liang Y, Sun Y, Dong F. Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2nanosheets:enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation. Appl Surf Sci. 2018;455(10):236.
    [15] Xiong T, Wen M, Dong F, Yu J, Han L, Lei B, Zhang Y, Tang X, Zang Z. Three dimensional Z-scheme(BiO)2CO3/MoS2with enhanced visible light photocatalytic NO removal. Appl Catal B Environ. 2016;199(10):87.
    [16] Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS2and graphene as cocatalysts for enhanced photocatalytic H2production activity of TiO2nanoparticles. J Am Chem Soc. 2012;134(15):6575.
    [17] Zhang W, Zhao Z, Dong F, Zhang Y. Solvent-assisted synthesis of porous g-C3N4with efficient visible-light photocatalytic performance for NO removal. Chinese J Catal. 2017;38(2):372.
    [18] Sun Y, Zhang W, Xiong T, Zhao Z, Dong F, Wang R. Growth of BiOBr nanosheets on C3N4nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal. J Colloid Interface Sci. 2014;418(3):317.
    [19] Dong F, Bian J, Sun Y, Xiong T, Zhang W. The rapid synthesis of photocatalytic(BiO)2CO3single-crystal nanosheets via an eco-friendly approach. CrystEngComm. 2014;16(17):3592.
    [20] Zhang W, Zhang J, Dong F, Zhang Y. Facile synthesis of in situ phosphorus-doped g-C3N4with enhanced visible light photocatalytic property for NO purification. RSC Adv. 2016;6(91):88085.
    [21] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2nanoparticles grown on graphene:an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc. 2011;133(19):7296.
    [22] Cheng C, Liu G, Kang Du, Li G, Zhang W, Sanna S, Chen Y,Pryds N, Wang K. Enhanced visible light catalytic activity of MoS2/TiO2/Ti photocathode by hybrid-junction. Appl Catal B Environ. 2018;237(12):416.
    [23] Roy S, Choi W, Jeon S, Kim DH, Kim H, Yun SJ, Lee Y, Lee J,Kim Y, Kim J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018;18(7):4523.
    [24] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M.Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011;11(12):5111.
    [25] Feng X, Zhang W, Sun Y, Huang H, Dong F. Fe(III)cluster-grafted(BiO)2CO3superstructures:in situ DRIFTS investigation on IFCT-enhanced visible light photocatalytic NO oxidation. Environ Sci Nano. 2017;4(3):604.
    [26] Sivachandiran L, Thevenet F, Rousseau A, Bianchi D. NO2adsorption mechanism on TiO2:an in situ transmission infrared spectroscopy study. Appl Catal B Environ. 2016;198(12):411.
    [27] Weingand T, Kuba S, Hadjiivanov K, Kno¨zinger H. Nature and reactivity of the surface species formed after NO adsorption and NO? O2coadsorption on a WO3–ZrO2catalyst. J Catal. 2002;209(2):539.
    [28] Savara A, Weitz E. Elucidation of intermediates and mechanisms in heterogeneous catalysis using infrared spectroscopy.Annu Rev Phys Chem. 2014;265(1):49.
    [29] Wu JCS, Cheng YT. In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation. J Catal. 2006;237(2):393.
    [30] Kantcheva M. Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts.J Catal. 2001;204(2):479.
    [31] Zhang W, Liu X, Dong X, Dong F, Zhang Y. Facile synthesis of Bi12O17Br2and Bi4O5Br2nanosheets:in situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway. Chin J Catal. 2017;38(12):2030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700