流固耦合作用下页岩地层液相侵入机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the invasion mechanism of liquid phase into shale formation under the effect of fluid-solid coupling
  • 作者:李泽 ; 李皋 ; 杨旭 ; 王希勇 ; 刘林 ; 戴成
  • 英文作者:LI Ze;LI Gao;YANG Xu;WANG Xiyong;LIU Lin;DAI Cheng;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University;SINOPEC Southwest Oil & Gas Branch Company;
  • 关键词:页岩 ; 复杂孔隙介质 ; 流固耦合 ; 液相侵入 ; 机理
  • 英文关键词:shale;;complex porous medium;;fluid-solid coupling;;liquid invasion;;mechanism
  • 中文刊名:SYZC
  • 英文刊名:Oil Drilling & Production Technology
  • 机构:西南石油大学·油气藏地质及开发工程国家重点实验室;中国石油化工股份有限公司西南油气分公司;
  • 出版日期:2018-11-20
  • 出版单位:石油钻采工艺
  • 年:2018
  • 期:v.40;No.240
  • 基金:国家自然科学基金项目“井下碳酸盐岩裂缝多物理场耦合变形与渗流机理研究”(编号:51674217);; “十三五”国家科技重大专项课题“低渗油气藏钻井液完井液及储层保护技术”(编号:2016ZX05021-004)
  • 语种:中文;
  • 页:SYZC201806010
  • 页数:6
  • CN:06
  • ISSN:13-1072/TE
  • 分类号:49-54
摘要
页岩地层液相侵入将会导致井壁失稳等井下事故的发生,但目前关于页岩地层液相侵入及流固耦合现象研究尚不深入。建立了流固耦合作用下的页岩地层液相侵入数学模型,并对模型求解结果进行了验证和分析。结果表明:侵入初期,液相在人工裂缝内的渗流占据主导作用,但随着侵入时间的延长,复杂孔隙介质内的压力差将逐渐减弱,基质及裂缝系统内的渗流压力将趋于一致;流固耦合作用在液相侵入过程中影响显著,裂缝系统及基质的渗透率在流固耦合作用下增大,同时间段内耦合工况下的渗流压力大于非耦合工况下的渗流压力。将基质、天然裂缝、人工裂缝视为3个不同压力系统基础上得到的研究结果对科学认识流固耦合作用下的页岩地层液相侵入机理具有一定的指导意义。
        The invasion of liquid phase into shale formation can lead to downhole accidents, e.g. borehole instability. So far, however, the invasion of liquid phase into shale formation and the fluid-solid coupling phenomenon have not been studied deeply. The mathematical model for the invasion of liquid phase into shale formation under the effect of fluid-solid coupling was established. In addition,its solution results were verified and analyzed. It is shown that in the early stage of liquid invasion, its seepage in artificial fractures is dominant. With the extension of invasion time, however, the pressure difference in complex porous medium decreases gradually, and the seepage pressure in the matrix tends to be consistent with that in the fracture system. The effect of fluid-solid coupling in the process of liquid invasion is significant, and the permeability of fracture system and matrix increases under the effect of fluid-solid coupling. And in the same time interval, the seepage pressure under the working condition of coupling is higher than that of non-coupling. In conclusion,the research results which are obtained by taking matrix, natural fracture and artificial fracture as three different pressure systems play a guiding role for understanding the invasion mechanisms of liquid phase into shale formation under the effect of fluid-solid coupling scientifically.
引文
[1]刘厚彬,孟英峰,李皋,李平,邓元洲.泥页岩水化作用对岩石强度的影响[J].钻采工艺,2010,33(6):18-20.LIU Houbin,MENG Yingfeng,LI Gao,LI Ping,DENGYuanzhou.Theoretical simulation and experimental evaluation of the effect of hydration on the shale rock strength[J].Drilling&Production Technology,2010,33(6):18-20.
    [2]梁利喜,丁乙,刘向君,许丽.硬脆性泥页岩井壁稳定渗流-力化耦合研究[J].特种油气藏,2016,23(2):140-143.LIANG Lixi,DING Yi,LIU Xiangjun,XU Li.Seepagemechanochemistry coupling of wellbore stability in hardbrittle shale[J].Special Oil&Gas Reservoirs,2016,23(2):140-143.
    [3]曹园,邓金根,蔚宝华,赵凯.深部泥页岩水化特性研究[J].科学技术与工程,2014,14(6):118-120.CAO Yuan,DENG Jingen,WEI Baohua,ZHAO Kai.Hydration properties research of deep formation shale[J].Science Technology and Engineering,2014,14(6):118-120.
    [4]胡进科,李皋,孟英峰.页岩气钻井过程中的储层保护[J].天然气工业,2012,32(12):66-70.HU Jinke,LI Gao,MENG Yingfeng.Reservoir protection in the process of shale gas drilling[J].Nature Gas Industry,2012,32(12):66-70.
    [5]康毅力,皇凡生,游利军,俞杨烽,练章华.钻井液浸泡页岩裂缝宽度的模拟及应用[J].石油钻采工艺,2014,36(5):41-46.KANG Yili,HUANG Fansheng,YOU Lijun,YUYangfeng,LIAN Zhanghua.Simulation and application of shale fracture width immersed in drilling fluid[J].Oil Drilling&Production Technology,2014,36(5):41-46.
    [6]BLASKOVICH F T,CAIN G M,SONIER F,WALDREND.A multicomponent isothermal system for efficient reservoir simulation[C].Middle East Oil Technical Conference and Exhibition,Bahrain,SPE 11480,1983.
    [7]NOORISHAD J,MEHRAN M.An upstream finite element method for solution of transient transport equation in fractured porous media[J].Water Resources Research,1982,18(3):588-596.
    [8]MEYER B R,BAZAN L W.A discrete fracture network model for hydraulically induced fractures-theory,parametric and case studies[C].SPE Hydraulic Fracturing Technology Conference,Texas,2011.
    [9]卢义玉,刘小川,汤积仁,黄飞.热流固耦合作用下页岩渗透特性实验[J].重庆大学学报,2016,39(1):65-71.LU Yiyu,LIU Xiaochuan,TANG Jiren,HUANGFei.Effects of heat flow fluid-solid coupling on the characteristics of shale permeability[J].Journal of Chongqing University,2016,39(1):65-71.
    [10]康永尚,邓泽,王红岩,刘洪林,袁春林,赵群.流-固耦合物理模拟实验及其对页岩压裂改造的启示[J].地球科学,2016,41(8):1376-1383.KANG Yongshang,DENG Ze,WANG Hongyan,LIUHonglin,YUAN Chunlin,ZHAO Qun.Fluid-solid coupling physical experiments and their implications for fracturing stimulations of shale gas reservoirs[J].Earth Science,2016,41(8):1376-1383.
    [11]WU Yu,LIU Jishan,ELSWORTH D,CHEN Zhongwei.Dual poroelastic response of a coal seam to CO2 injection[J].International Journal of Greenhouse Gas Control,2010,4(4):668-678.
    [12]顾岱鸿,丁道权,刘军,丁志文,刘锦华,朱智.三重介质页岩气藏分段压裂水平井产能预测模型[J].大庆石油地质与开发,2016,35(1):158-165.GU Daihong,DING Daoquan,LIU Jun,DING Zhiwen,LIU Jinhua,ZHU Zhi.Productivity predicting model of the staged fractured horizontal well in triple-media shale gas reservoirs[J].Petroleum Geology and Oilfield Development in Daqing,2016,35(1):158-165.
    [13]赵强.裂缝流固耦合渗流机理研究[D].成都:西南石油大学,2015.ZHAO Qiang.Study on fluid-solid coupling flow mechanism of fracture[D].Chengdu:Southwest Petroleum University,2015.
    [14]曾辉.致密砂岩气藏压裂缝耦合损害机理研究[D].成都:西南石油大学,2017.ZENG Hui.Coupled damage mechanisms of hydraulic fracture in tight gas reservoirs[D].Chengdu:Southwest Petroleum University,2017.
    [15]罗兵.致密气层气体钻开井周应力动态分布规律研究[D].成都:西南石油大学,2014.LUO Bing.Study on the dynamic distribution law of persimal stress in tight gas layer drilling[D].Chengdu:Southwest Petroleum University,2014.
    [16]任文希.孔隙-裂缝性致密砂岩液相侵入过程流固耦合作用研究[D].成都:西南石油大学,2015.REN Wenxi.Fluid-solid interaction in liquid-phase intrusion of pore-fractured tight sandstone[D].Chengdu:Southwest Petroleum University,2015.
    [17]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65.RAN Qiquan,LI Shilun.Study on dynamic models of reservoir parameters in the coupled simulation of multiphase flow and reservoir deformation[J].Petroleum Exploration and Development,1997,24(3):61-65.
    [18]ZHAO Zhihong,JING Lanru,NERETNIEKS I,MORENO L.Analytical solution of coupled stressflow-transport processes in a single rock fracture[J].Computers&Geosciences,2011,37(9):1437-1449.
    [19]吴宇.煤层中封存二氧化碳的双重孔隙力学效应研究[D].北京:中国矿业大学,2010.WU Yu.Dual poroelastic response of coal to CO2sequestration[D].Beijing:China University of Mining and Technology,2010.
    [20]程万.三维空间下裂缝性页岩储层水力裂缝扩展机理研究[D].北京:中国石油大学(北京),2016.CHENG Wan.Mechanism of hydraulic fracture propagation in fractured shale reservoir in three dimensional space[D].Beijing:China University of Petroleum,2016.
    [21]范鑫.页岩基质流固耦合数值模拟与人工裂缝参数优化研究[D].北京:中国石油大学(北京),2016.FAN Xin.Research on hydro-mechanical coupled simulation in shale matrix and parameter optimization of hydraulic fracture[D].Beijing:China University of Petroleum,2016.
    [22]宋付权,胡箫,纪凯,黄小荷.考虑流固耦合影响的页岩力学性质和渗流规律[J].天然气工业,2017,37(7):69-75.SONG Fuquan,HU Xiao,JI Kai,HUANG Xiaohe.Effect of fluid-solid coupling on shale mechanics and seepage laws[J].Natural Gas Industry,2017,37(7):69-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700