金属玻璃基复合材料率敏感性变形行为的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Rate-dependent Deformation Behavior of Metallic Glass Matrix Composites
  • 作者:蒋晓琴 ; 张娟 ; 饶威
  • 英文作者:JIANG Xiaoqin;ZHANG Juan;RAO Wei;School of Mechanics and Engineering,Southwest Jiaotong University;
  • 关键词:金属玻璃 ; 复合材料 ; 率敏感性 ; 有限元模拟 ; 剪切带
  • 英文关键词:metallic glasses;;composite materials;;rate-dependent;;the finite element simulation;;shear bands
  • 中文刊名:SCQX
  • 英文刊名:Journal of Sichuan University of Science & Engineering(Natural Science Edition)
  • 机构:西南交通大学力学与工程学院;
  • 出版日期:2019-06-20
  • 出版单位:四川理工学院学报(自然科学版)
  • 年:2019
  • 期:v.32;No.151
  • 基金:国家自然科学基金面上项目(11372259)
  • 语种:中文;
  • 页:SCQX201903007
  • 页数:9
  • CN:03
  • ISSN:51-1687/N
  • 分类号:48-56
摘要
基于已有的块体金属玻璃基复合材料(BMGCs)在室温准静态不同应变速率加载下的实验研究,拟运用有限元软件ABAQUS对BMGCs的率敏感性变形行为进行数值模拟研究,并将模拟结果与实验结果进行对比,验证有限元模型的合理性。金属玻璃基体和增韧相的本构模型分别采用自由体积模型和各向同性双线性Cowper-Symonds模型。将自由体积模型编写成用户材料子程序(UMAT),在有限元计算过程中调用该子程序来描述金属玻璃基体的变形行为,并利用von-Mises等效剪切塑性应变表征剪切带的萌生和扩展。然后分别假定增韧相表现率效应和不表现率效应,在这两种情形下进一步讨论不同应变率加载时复合材料中等效塑性应变的分布以及剪切带的萌生和演化规律,探讨BMGCs的率敏感性变形行为以及失效机理。结果表明:(1) BMGCs的率敏感性由基体和增韧相的率敏感性共同决定;(2)不管增韧相是否表现率效应,当应变速率越大时,BMGCs基体内剪切带扩展得越快,复合材料越容易发生破坏;(3)相比于增韧相不表现率效应,当增韧相表现率效应时复合材料的宏观塑性变形能力得到提升。
        Based on the existing experimental study of bulk metallic glass matrix composites(BMGCs) under quasistatic and different strain rate loadings at room temperature,the finite element software ABAQUS is used to numerically simulate the rate-dependent deformation behavior of BMGCs. The simulation results are compared with the experimental results to verify the rationality of the finite element model. The constitutive models of the metallic glass matrix and the toughened phase are respectively a free volume model and an isotropic bilinear Cower-Symonds model. The free volume model is written into the user material subroutine(UMAT),and then this UMAT is called during the finite element calculation to describe the deformation behavior of the matrix in the metallic glass matrix composite. And the von-Mises equivalent shear plastic strain is adopted to characterize the initiation and propagation of shear bands. Then the toughening phase performance rate-dependent and rate-independent are assumed. In these two cases,the distribution of equivalent plastic strain and the evolution of shear band in composites with different strain rate loadings are simulated,and then the rate-dependent deformation behavior and the failure mechanism of metallic glass matrix composites are discussed. The results show that:(1) the rate-dependent deformation behavior of BMGCs is codetermine by the matrix and the toughening phase;(2) whether the toughening phase performance rate-dependent or rate-independent deformation,the larger the strain rate,the faster the shear band expands in the matrix and therefore the material is more susceptible to damage;(3) compared with the toughening phase performance rateindependent,the macroscopic plastic deformation ability of the composite is improved when the toughening phase performance rate-dependent.
引文
[1]TELFORD M.The case for bulk metallic glass[J].Materials Today,2004,7(3):36-43.
    [2]INONE A,SHEN B,KOSHIBA H,et al.Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties[J].Nature Materials,2003,2(10):661-663.
    [3]INOUE A,TAKEUCHI A.Recent development and application products of bulk glassy alloys[J].Acta Materialia,2011,59(6):2243-2267.
    [4]SUN G Y,CHEN G,CHEN G L.Enhanced plasticity of Zr-based bulk metallic glass composite by in situ formedβ-Zr dendritics[J].Frontiers of Materials Science in China,2007,1(1):114-119.
    [5]HAYS C C,KIM C P,JOHNSON W L.Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J].Physical Review Letters,2000,84(13):2901-2904.
    [6]CONNER R D,CHOI-YIM H,JOHNSON W L.Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6metallic glass matrix particulate composites[J].Journal of Materials Research,1999,14(8):3292-3297.
    [7]DANDLIKER R B,CONNER R D,JOHNSON W L.Melt infiltration casting of bulk metallic-glass matrix composites[J].Journal of Materials Research,1998,13(10):2896-2901.
    [8]WANG B P,WANG L,XUE Y F,et al.Strain rate-dependent compressive deformation and failure behavior of porous Si C/Ti-based metallic glass composite[J].Materials Science&Engineering A,2014,609:53-59.
    [9]JIAO T,KECSKES L J,HUFNAGEL T C,et al.Deformation and failure of Zr57Nb5Al10Cu15.4Ni12.6/W particle composites under quasi-static and dynamic compression[J].Metallurgical&Materials Transactions A,2004,35(11):3439-3444.
    [10]XU J,MA L L,XUE Y F,et al.Work-hardening behavior,strain rate sensitivity,and failure behavior of in situ Cu Zr-based metallic glass matrix composite[J].Journal of Materials Science,2016,51(12):5992-6001.
    [11]ZHAI H M,XU Y H,DU Y,et al.Strain rate sensitivity and deformation behavior in a Ti-based bulk metallic glass composite[J].Journal of Non-Crystalline Solids,2017,471:128-136.
    [12]张亚娟,寇生中,李春燕,等.应变速率对锆基非晶复合材料力学性能的影响[J].有色金属(冶炼部分),2014(1):54-57.
    [13]姚佩,寇生中,李春燕,等.应变速率对Zr67.76Cu11.94Ni8.30Al12非晶复合材料力学性能及锯齿流变行为的影响[J].稀有金属材料与工程,2016,45(9):2337-2341.
    [14]JIAO Z M,WANG Z H,WU R F,et al.Dynamic deformation behaviors of an in situ Ti-Based metallic glass matrix composite[J].Journal of Materials Engineering&Performance,2016,25(11):4729-4734.
    [15]李继承,陈小伟,黄风雷.块体金属玻璃压缩变形和破坏特性的有限元模拟研究[J].固体力学学报,2016,37(s1):56-64.
    [16]RAO W,ZHANG J,KANG G Z,et al.Numerical simulation on the deformation behaviors of bulk metallic glass composites under uniaxial tension and compression[J].Composite Structures,2018,187:411-428.
    [17]刘杰,张娟,饶威.块体金属玻璃基复合材料在拉伸荷载下的剪切带演化模拟[J].四川理工学院学报:自然科学版,2018,31(2):19-25.
    [18]GREER A L,CHENG Y Q,MA E.Shear bands in metallic glasses[J].Materials Science&Engineering RReports,2013,74(4):71-132.
    [19]SPAEPEN F.A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J].Acta Metallurgica,1977,25(4):407-415.
    [20]HUANG R,SUO Z G,PREVOST J H,et al.Inhomogeneous deformation in metallic glasses[J].Journal of the Mechanics&Physics of Solids,2002,50(5):1011-1027.
    [21]COWPER G R,SYMONDS P S.Strain-hardening and strain-rate effects in the impact loading of cantilever beams[R].Providence:Brown University,1957.
    [22]GAO Y K.An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model[J].Modelling and Simulation in Materials Science and Engineering,2006,14(8):1329-1345.
    [23]QIAO J W,ZHANG Y,LI J H,et al.Strain rate response of a Zr-based composite fabricated by Bridgman solidification[J].International Journal of Minerals,Metallurgy and Materials,2010,17(2):214-219.
    [24]KIM Y C,KIM W T,KIM D H.A development of Ti-based bulk metallic glass[J].Materials Science&Engineering A,2004,375-377(1):127-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700