淬火过程流动及热参数的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of flow and thermal parameters during quenching process
  • 作者:郅东东 ; 孙会 ; 沈忱
  • 英文作者:Zhi Dongdong;Sun Hui;Shen Chen;School of Mechanical Engineering,Shanghai Dianji University;School of Mechanical Engineering,University of Shanghai for Science and Technology;
  • 关键词:温度 ; 沸腾传热 ; 膜厚测量 ; 纳米改性 ; 临界热流密度
  • 英文关键词:temperature;;boiling heat transfer;;film thickness measurement;;nano modification;;critical heat flux
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:上海电机学院机械学院;上海理工大学机械工程学院;
  • 出版日期:2018-11-25
  • 出版单位:金属热处理
  • 年:2018
  • 期:v.43;No.495
  • 基金:国家自然科学基金(51304133);; 上海高校知识服务平台建设项目(ZF1225);; 上海电机学院登峰学科建设项目(16DFXK01)
  • 语种:中文;
  • 页:JSRC201811048
  • 页数:8
  • CN:11
  • ISSN:11-1860/TG
  • 分类号:201-208
摘要
流动和热参量是淬火过程中控制淬火质量的关键点。利用热电偶或非接触式温度测量仪可以得到淬火工件表面的温度,并以此对传热过程进行研究,以评定淬火介质的热交换和冷却能力。通过一定技术手段对介质流场结构尤其是流速进行测定,以保证淬火质量、提高淬火效率。淬火过程中发生的汽液两相流动沸腾现象使得淬火过程更加复杂。膜态沸腾阶段和核态沸腾阶段是沸腾现象的重要研究内容,而其中涉及的蒸汽膜物理特性试验研究,以及通过纳米改性技术主动或被动改变试件材料表面微观性质以此改变临界热流密度的试验研究成为当前沸腾现象试验研究的新动向。
        Flow and thermal parameters are key points throughout the quenching process to control the heat treatment effect of workpieces.The surface temperature of workpieces,which can be measured by thermocouples or non-contact thermal measuring instrument,was analyzed to investigate the cooling capacity of the quenchant and heat exchange rate between the quenchant and workpiece. The flow field structure of the quenchant,indicated by the flow velocity vectors,was measured to ensure the quenching quality and improve the quenching efficiency.Furthermore,more details have been unveiled through the studies of the vapor-liquid two-phase flow and boiling phenomenon during the quenching process,and the film boiling and nucleate boiling stages are becoming the cutting edge field. Nowadays,actively or passively modifying the surficial micro-properties of workpieces by nano-modification technology has become the research hot point.
引文
[1]Pilling N B.Autographic measurements of the quenching power of liquids[J].Journal of the Franklin Institute,1919,187(4):507-508.
    [2]Peyayopanakul W,Westwater J W.Evaluation of the unsteady-state quenching method for determining boiling curves[J].International Journal of Heat&Mass Transfer,1978,21(11):1437-1445.
    [3]Woodfield P L,Monde M,Mozumder A K.Observations of high temperature impinging-jet boiling phenomena[J].International Journal of Heat and Mass Transfer,2005,48(10):2032-2041.
    [4]Woodfield P L,Mozumder A K,Monde M.On the size of the boiling region in jet impingement quenching[J].International Journal of Heat and Mass Transfer,2009,52(1):460-465.
    [5]Kim Y,Lee W J,Case E D.The measurement of the surface heat transfer coefficient for ceramics quenched into a water bath[J].Materials Science&Engineering A,1991,145(1):L7-L11.
    [6]赵源深,杨丽红.薄膜热电偶温度传感器研究进展[J].传感器与微系统,2012,31(2):1-7.Zhao Yuanshen,Yang Lihong.Research progress of thin film thermocouple temperature sensor[J].Transducer and Microsystem Technologies,2012,31(2):1-7.
    [7]Nallathambi A K,Specht E.Estimation of heat flux in array of jets quenching using experimental and inverse finite element method[J].Journal of Materials Processing Technology,2009,209(12):5325-5332.
    [8]Gradeck M,Ouattara A,Maillet D,et al.Heat transfer associated to a hot surface quenched by a jet of oil-in-water emulsion[J].Experimental Thermal and Fluid Science,2011,35(5):841-847.
    [9]侯增寿,李星华.国产植物油淬火冷却能力[J].太原工学院学报,1957(1):41-44.Hou Zengshou,Li Xinghua.Quenching cooling capacity of domestic vegetable oil[J].Journal of Taiyuan University of Technology,1957(1):41-44.
    [10]田东,潘健生,毛立忠,等.测量淬火冷却曲线几种热电偶的安装方法[J].金属热处理,1998(11):32-34.Tian Dong,Pan Jiansheng,Mao Lizhong,et al.Thermocouple installation methods in measurement of cooling curves[J].Heat Treatment of Metals,1998(11):32-34.
    [11]张立文,朱大喜,王明伟.淬火冷却介质换热系数研究进展[J].金属热处理,2008,33(1):53-56.Zhang Liwen,Zhu Daxi,Wang Mingwei.Development of research on heat transfer coefficient for quenchant[J].Heat Treatment of Metals,2008,33(1):53-56.
    [12]顾剑峰,潘健生,胡明娟,等.淬火介质冷却能力评价-换热系数法[J].金属热处理学报,1999,22:320-323.Gu Jianfeng,Pan Jiansheng,Hu Mingjuan,et al.The evaluation of quenchants cooling ability-heat transfer coefficient method[J].Transactions of Metal Heat Treatment,1999,22:320-323.
    [13]Maniruzzaman M,Sisson R D Jr.Heat transfer coefficients for quenching process simulation[J].Journal de Physique IV(Proceedings),2004(120):521-528.
    [14]Allen F S,Fletcher A J.Effect of surface conditions on generation of stress and strain in quenched steel plates[J].Metal Science Journal,2013,3(4):291-298.
    [15]顾剑锋,潘健生,胡明娟.淬火过程中表面综合换热系数的反传热法分析[J].上海交通大学学报,1998,32(2):19-23.Gu Jianfeng,Pan Jiansheng,Hu Mingjuan.Inverse heat conduction analysis of synthetical surface heat transfer coefficient during quenching process[J].Journal of Shanghai Jiaotong University,1998,32(2):19-23.
    [16]温柳,刘露露,高萌,等.6061铝合金淬火冷却过程中的表面换热系数[J].金属热处理,2011,36(10):59-63.Wen Liu,Liu Lulu,Gao Meng,et al.Surface heat transfer coefficient of 6061 aluminum alloy during quenching[J].Heat Treatment of Metals,2011,36(10):59-63.
    [17]Kavskii N N,Zelokhovtseva R K.Optimum cooling during the quenching of steel[J].Izv.V.U.Z.chernaya Metall,1982(3):111-113.
    [18]Garwood D R,Lucas J D,Wallis R A,et al.Modeling of the flow distribution in an oil quench tank[J].Journal of Materials Engineering&Performance,1992,1(6):781-787.
    [19]Choo Y J,Song C H.PIV measurements of turbulent jet and pool mixing produced by a steam jet discharge in a subcooled water pool[J].Nuclear Engineering and Design,2010,240(9):2215-2224.
    [20]Chen N L,Liao B,Pan J S,et al.Improvement of the flow rate distribution in quench tank by measurement and computer simulation[J].Materials Letters,2006,60(13/14):1659-1664.
    [21]张克俭,王水,郝学志.液态介质中淬火冷却的四阶段理论[J].热处理技术与装备,2006,27(6):14-25.Zhang Kejian,Wang Shui,Hao Xuezhi.The four-stage differentiation of heat removal during quenching in liquid quenchant[J].Heat Treatment Technology and Equipment,2006,27(6):14-25.
    [22]Judd R L,Jr H M.Evaluation of nucleate boiling heat flux predictions at varying levels of subcooling and acceleration[J].International Journal of Heat and Mass Transfer,1972,15(5):1075-1078.
    [23]Peyayopanakul W,Westwater J W.Evaluation of the unsteady-state quenching method for determining boiling curves[J].International Journal of Heat and Mass Transfer,1978,21(11):1437-1445.
    [24]管鄂.压力调节淬火冷却过程的探讨[J].武汉水利电力学院学报,1984(3):153-158.Guan E.An exploration of cooling process in quenching by pressure control[J].Journal of Wuhan University of Hydraulic and Electric Engineering,1984(3):153-158.
    [25]Nusselt W.Die Oberflchenkondesation des Wasserdamffes the surface condensation of water[J].Zetrschr Ver Deutch Ing,1916(60):541-546.
    [26]佚名.超前扩展点的形成与淬火冷却过程的四点图[J].金属热处理,2014,39(10):88.Anonymity.The formation of advanced expansion point and four points of quenching cooling process[J].Heat Treatment of Metals,2014,39(10):88-88.
    [27]张克俭,王水,郝学志.交界线借用挑战有效厚度观念[J].热处理技术与装备,2007(3):23-28.Zhang Kejian,Wang Shui,Hao Xuezhi.Borrowing the demarcation line has a challenge to the concept of effective thickness[J].Heat Treatment Technology and Equipment,2007(3):23-28.
    [28]张克俭,王水,郝学志.淬火冷却中工件的正放与斜放(一)[J].热处理技术装备,2009,30(1):25-31.Zhang Kejian Wang Shui,Hao Xuezhi.How to place your workpiece during oil quenching part I[J].Heat Treatment Technology and Equipment,2009,30(1):25-31.
    [29]Thomson A K G.Heat transmission in film-type coolers[J].Society Chem Industry Japan Supplemental Bind,1937,40:380-384.
    [30]Taiby S R,Portalski S.The hydrodynamics of liquid films flowing on a vertical surface[J].Trans Inst Chem Eng,1960,38:324-330.
    [31]Lainer K,Tensi H M.Determination of vapor film thickness during immersion cooling in aqueous polymer solutions[R].ASMInternational,Materials Park,OH(United States),1996.
    [32]Gstoehl D,Roques J F,Crisinel P,et al.Measurement of falling film thickness around a horizontal tube using a laser measurement technique[J].Heat Transfer Engineering,2004,25(8):28-34.
    [33]Takemori K,Ishihara I,Matsumoto R,et al.D214 behavior of condensate of carbon dioxide and heat transfer in subcritical region[C]//Proceedings of the International Conference on Power Engineering:ICOPE.The Japan Society of Mechanical Engineers,2017:2-329-2-334.
    [34]Alekseenko S V,Cherdantsev A V,Cherdantsev M V,et al.Study of formation and development of disturbance waves in annular gas-liquid flow[J].International Journal of Multiphase Flow,2015,77:65-75.
    [35]Zhang K J.New cognitions and techniques about control of quenching cooling process[J].Heat Treatment of Metals,2010,35(10):103-112.
    [36]Chen X,Shen S Q,Wang Y X,et al.Measurement on falling film thickness distribution around horizontal tube with laser-induced fluorescence technique[J].International Journal of Heat and Mass Transfer,2015,89:707-713.
    [37]陈子琪.水平管外降膜的厚度测量及传热实验研究[D].武汉:华中科技大学,2013.
    [38]李斌.电容式水膜厚度测量传感器的设计与实现[D].济南:山东建筑大学,2016.
    [39]Yu Y,Ma L,Ye H,et al.Research of non-contact measurement for high viscous fluid falling film thickness on spherical series surface[J].Measurement,2017,101:1-8.
    [40]张克俭,王水,郝学志.吊重法测蒸汽膜厚度(一)[J].热处理技术与装备,2008(1):18-24.Zhang Kejian,Wang Shui,Hao Xuezhi.Measurement of the thickness of vapor blanket by floating weighing method part I[J].Heat Treatment Technology and Equipment,2008(1):18-24.
    [41]沈正祥,李金柱,吕中杰,等.高温球体与水的沸腾传热特性研究[J].北京理工大学学报,2013,33(5):445-449.Shen Zhengxiang,Li Jinzhu,LüZhongjie,et al.Research on the characters of boiling heat transfer from high temperature sphere to water[J].Transactions of Beijing Institute of Technology,2013,33(5):445-449.
    [42]Makishi O,Honda H.Examination of minimum-heat-flux-point condition for film boiling on a sphere in terms of the limiting liquid superheat and the critical vapor film thickness[J].International Journal of Heat and Mass Transfer,2012,55(9/10):2377-2383.
    [43]Hu H P.Boiling heat transfer on a sphere with turbulent vapour film[J].Applied Mathematical Modelling,2010,34(11):3244-3254.
    [44]李旦洋.大容器瞬态沸腾传热表面调控机理的实验研究[D].杭州:浙江大学,2014.
    [45]Grigoriev V A,Klimenko V V,Pavlov Y M,et al.The influence of some heating surface properties on the critical heat flux in cryogenic liquids boiling Conference Proceedings[C]//Proceedings of Sixth International Heat Transfer.Toronto,1978:215-220.
    [46]张世一,张晓忠,金滔,等.沸腾表面对液氮临界热流密度的影响实验[J].低温工程,2011(4):7-10.Zhang Shiyi,Zhang Xiaozhong,Jin Tao,et al.Experiment for influence of boiling surface on critical heat flux in liquid nitrogen pool boiling[J].Cryogenics,2011(4):7-10.
    [47]You S M,Kim J H,Kim K H.Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer[J].Applied Physics Letters,2003,83(16):3374-3376.
    [48]Das S K,Putra N,Roetzel W.Pool boiling characteristics of nanofluids[J].International Journal of Heat and Mass Transfer,2003,46(5):851-862.
    [49]Kim H,Kim M.Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids[J].Heat and Mass Transfer,2009,45(7):991-998.
    [50]Araj H,Smith P D.Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux[J].Applied Physics Letters,2010,97(2):023103-023103-3.
    [51]王洪亮,夏虹,张会勇,等.纳米流体对临界热流密度强化影响池沸腾实验研究[J].应用科技,2017(1):82-86.Wang Hongliang,Xia Hong,Zhang Huiyong,et al.Investigation of critical heat flux enhancement pool boiling experiment by using nanofluids[J].Applied Science and Technology,2017(1):82-86.
    [52]董飞英.石墨烯纳米悬浮液大容器淬火沸腾传热特性的实验研究[D].杭州:浙江大学,2014.
    [53]Feng B,Weaver K,Peterson G P.Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina[J].Applied Physics Letters,2012,100(5):941.
    [54]Rahman M M,l9erogˇlu E,Mccarthy M.Role of wickability on the critical heat flux of structured superhydrophilic surfaces[J].Langmuir the Acs Journal of Surfaces and Colloids,2014,30(37):11225.
    [55]Vakarelski I U,Patankar N A,Marston J O,et al.Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces[J].Nature,2012,489(7415):274-277.
    [56]Fan L,Li J Q,Li D Y,et al.Enhanced transient pool boiling of water on nanoscale textured superhydrophilic surfaces[C]//Proceedings of the 15thInternational Heat Transfer Conference.Kyoto,2014:6359-6366.
    [57]Fan L W,Li J Q,Li D Y,et al.Regulated transient pool boiling of water during quenching on nanostructured surfaces with modified wettability from superhydrophilic to superhydrophobic[J].International Journal of Heat and Mass Transfer,2014,76(6):81-89.
    [58]李佳琦,苏悠悠,范利武,等.超疏水表面膜态池沸腾传热实验研究[J].工程热物理学报,2015(8):1769-1773.Li Jiaqi,Su Youyou,Fan Liwu,et al.An experimental study of pool film boiling heat transfer on superhydrophobic surfaces[J].Journal of Engineering Thermophysics,2015(8):1769-1773.
    [59]李佳琦,范利武,俞自涛.超亲水表面在淬火冷却过程中的沸腾传热特性[J].浙江大学学报(工学版),2016(8):1493-1498.Li Jiaqi,Fan Liwu,Yu Zitao.Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J].Journal of Zhejiang University(Engineering Science),2016(8):1493-1498.
    [60]刘振华,李元阳,汪国山,等.纳米特性表面圆柱型高速喷流沸腾临界热流密度的实验研究[J].工程热物理学报,2014(11):2235-2239.Liu Zhenhua,LI Yuanyang,Wang Guoshan,et al.Experimental study on critical heat flux of high-velocity circular jet impingement boiling on the nano-characteristic stagnation zone[J].Journal of Engineering Thermophysics,2014(11):2235-2239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700