铝型材挤压在线淬火系统喷嘴流速的仿真优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation optimization of water spray velocities of on-line quenching system for extruded aluminum profiles
  • 作者:刘志文 ; 李落星 ; 胡理中 ; 王冠
  • 英文作者:LIU Zhiwen;LI Luoxing;HU Lizhong;WANG Guan;School of Mechanical Engineering,University of South China;State Key Laboratory of Advanced Design and Manufacture for Vehicle Body (Hunan University);
  • 关键词:铝型材 ; 在线淬火 ; 界面换热系数 ; 喷嘴流速 ; 数值仿真 ; 残余变形
  • 英文关键词:aluminum profile;;online quenching;;heat transfer coefficient;;nozzle velocity;;numerical simulation;;residual deformation
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:南华大学机械工程学院;汽车车身先进设计制造国家重点实验室(湖南大学);
  • 出版日期:2018-12-27
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(U1664252,51605234);; 湖南大学汽车车身先进设计制造国家重点实验室开放基金(31715011)
  • 语种:中文;
  • 页:HEBX201901028
  • 页数:10
  • CN:01
  • ISSN:23-1235/T
  • 分类号:197-206
摘要
为制定最优的在线淬火系统喷嘴流速方案,基于Fluent和Workbench软件平台建立了π字形大断面铝型材挤压在线淬火过程的有限元模型.为了准确确定仿真模型中的热边界条件,采用末端淬火实验和反热传导相结合的方法,获得了不同喷水流量下的界面换热系数.系统分析了3种不同喷嘴流速方案铝型材实际挤压在线淬火冷却过程中的流速场、温度场、应力场和残余变形.结果表明:随着喷水流量的增大,淬火介质与型材的界面换热系数增加且到达峰值的时刻越晚.有限元模拟的特征点温度与试验测量的温度变化趋势一致,相对误差范围为-1.1%~7.8%,验证了所建立的淬火有限元模型是准确的.初始方案一型材挤压在线淬火过程中各部位冷却不均匀,在接头处产生较大的热应力,使型材上端面发生内凹. 3种不同的喷嘴流速方案中,方案三中型材表面和中间截面位置淬火冷却过程能得到更为均匀的温度场,残余应力和变形最小.研究方法和结果可为复杂铝合金型材挤压在线淬火系统喷嘴流速的制定和优化提供理论指导.
        To obtain the optimal water spray velocities of on-line quenching system,a finite element model for simulating the on-line quenching process of large section π-shaped aluminum profiles was established based on Fluent and Workbench software platform. To determine the thermal boundary conditions in the simulation,methods in spray quenching experiments combined with inverse heat conduction were used to get the heat transfer coefficients under different spray water fluxes. The velocity,temperature,stress fields and residual deformation of extruded profiles during on-line quenching process under three schemes with different nozzles velocities were analyzed systematically. The results show that the heat transfer coefficient increases with the increase of spray water flux,and the time to reach the peak value is later. The simulated temperatures of feature points present corresponding changes with the measured ones and the relative error range is-0.7 ~ 7.8%,which verifies the accuracy of finite element model. For the initial quenching process scheme,a large thermal stress is formed at the joint position due to the non-uniform cooling of profile section,which leads to concave defect at the upper surface of profile. A relatively uniform temperature field can be obtained on the surface and middle section of profile by adopting the scheme 3,and the minimum residual stress and deformation can be achieved. The research methods and results are helpful to the design of nozzles velocities in the on-line quenching system for hollow aluminum profiles extrusion.
引文
[1] ZHANG J,DENG Y,YANG W,et al. Design of the multi-stage quenching process for 7050 aluminum alloy[J]. Materials&Design,2014,56(4):334. DOI:10.1016/j.matdes.2013.09.029
    [2]张君,杨合,谢东钢,等.大型挤压铝型材淬火技术与装置[J].机械工程学报,2007,43(7):133. DOI:10.3321/j.issn:0577-6686.2007.07.024ZHANG Jun,YANG He,XIE Donggang,et al. Fast-cooling technique and equipments of large-size aluminium profile[J]. Journal of Mechanical Engineering,2007,43(7):133. DOI:10.3321/j. issn:0577-6686.2007.07.024
    [3]ZHANG Y,YI Y,HUANG S,et al. Influence of temperature-dependent properties of aluminum alloy on evolution of plastic strain and residual stress during quenching process[J]. Metal,2017,7(6):228. DOI:10.3390/met7060228
    [4] NOWAK M,GOLOVKO O,NRNBERGER F,et al. Water-air spray cooling of extruded profiles:process integrated heat treatment of the alloy EN AW-6082[J]. Journal of Materials Engineering&Performance,2013,22(9):2580. DOI:10. 1007/s11665-013-0563-6
    [5]FENG X,ZHANG L,LI Z,et al. FEM simulation and experimental study on the quenching residual stress of aluminum alloy 2024[J].Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2013,227(7):954. DOI:10.1177/0954405412465232
    [6]BIKASS S,ANDERSSON B,PILIPENKO A,et al. Simulation of the distortion mechanisms due to non-uniform cooling in the aluminum extrusion process[J]. International Journal of Thermal Sciences,2012,52(2):50. DOI:10.1016/j.ijthermalsci.2011.06.002
    [7]CAO H L,LI X W,LI Y N,et al. Numerical simulation of quenching and pre-stretching residual stress in 7085 aluminum alloy plate[J]. Materials Science Forum,2016,852:211.DOI:10.4028/www.scientific.net/MSF.852.211
    [8]WANG H,YANG H B. 6063 Aluminum alloy online quenching surface heat transfer coefficient and the temperature field simulation[J]. Applied Mechanics&Materials,2014,446-447:146.DOI:10.4028/www.scientific.net/AMM.446-447.146
    [9]李落星,胡理中,刘志文,等.铝合金挤压型材淬火模拟研究及工艺参数的改进[J].湖南大学学报(自科版),2013,40(2):71. DOI:10.3969/j.issn.1674-2974.2013.02.012LI Luoxing,HU Lizhong,LIU Zhiwen,et al. Simulation study of the quenching process and parameter improvement of aluminum extrusion[J]. Journal of Hunan University(Natural Sciences),2013,40(2):71.DOI:10.3969/j.issn.1674-2974.2013.02.012
    [10]YANG X W,ZHU J C,LI W Y. CFD-supported optimization of flow distribution in quench tank for heat treatment of A357 alloy large complicated components[J]. Transactions of Nonferrous Metals Society of China,2015,25(10):3399. DOI:10.1016/S1003-6326(15)63975-9
    [11]徐戎,李落星,姚再起.交通用铝型材挤压在线淬火过程的数值模拟和实验验证[J].中南大学学报(自然科学版),2017,48(12):3263.DOI:10.11817/j.issn.1672-7207.2017.12.017XU Rong,LI Luoxing,YAO Zaiqi. Numerical simulation and experimental verification of extrusion online quenching process of aluminum profile used for traffic[J]. Journal of Central South University(Science and Technology),2017,48(12):3263. DOI:10.11817/j.issn.1672-7207.2017.12.017
    [12]李杰,周杰,郑斯佳,等.铝合金H形截面板筋件淬火过程热力耦合数值模拟[J].兵器材料科学与工程,2017,40(5):82.DOI:10.14024/j.cnki.1004-244x.20170907.006LI Jie,ZHOU Jie,ZHENG Sijia,et al. Coupled thermal-mechanical simulation on quenching of aluminum alloy H-shaped section plate reinforced part[J]. Ordnance Material Science and Engineering,2017,40(5):82. DOI:10.14024/j.cnki.1004-244x.20170907.006
    [13]WANG M J,YANG G,HUANG C Q,et al. Simulation of temperature and stress in 6061 aluminum alloy during online quenching process[J]. Transactions of Nonferrous Metals Society of China,2014,24(7):2168.DOI:10.1016/S1003-6326(14)63328-8
    [14]YANG X W,ZHU J C,LAI Z H,et al. Finite element analysis of quenching temperature field,residual stress and distortion in A357aluminum alloy large complicated thin-wall workpieces[J]. Transactions of Nonferrous Metals Society of China,2013,23(6):1751.DOI:10.1016/S1003-6326(13)62657-6
    [15]FORESTIER R,MASSONI E,CHASTEL Y. Estimation of constitutive parameters using an inverse method coupled to 3D finite element software[J]. Journal of Materials Processing Technology,2002,125-126:594. DOI:10.1016/S0924-0136(02)00406-5
    [16]STORCH R B,PIMENTEL L C G,ORLANDE H R B. Identification of atmospheric boundary layer parameters by inverse problem[J]. Atmospheric Environment,2007,41(7):1417. DOI:10.1016/j.atmosenv.2006.10.014
    [17]袁俭,张伟民,刘占仓,等.不同冷却方式下换热系数的测量与计算[J].材料热处理学报,2005,26(4):115. DOI:10.3969/j.issn.1009-6264.2005.04.029YUAN Jian,ZHANG Weimin,LIU Zhancang,et al. The measurement and calculation of heat transfer coefficient under different cooling conditions[J]. Transactions of Materials&Heat Treatment,2005,26(4):115. DOI:10.3969/j.issn.1009-6264. 2005.04.029
    [18]LI H,ZHAO G,HE L. Finite element method based simulation of stress-strain field in the quenching process[J]. Materials Science&Engineering A,2008,478(1-2):276. 10. 1016/j. msea. 2007. 05.101. DOI:10.1016/j.msea.2007.05.101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700