铝合金喷丸工艺参数-表面特征值的函数关系与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Function Relationship between Shot Peening Parameters and Surface Characteristic of Al-based Alloy and Application
  • 作者:陈家伟 ; 廖凯 ; 李立君 ; 高自成 ; 陈辉 ; 龚海
  • 英文作者:CHEN Jia-wei;LIAO Kai;LI Li-jun;GAO Zi-cheng;CHEN Hui;GONG Hai;Central South University of Forestry and Technology;Central South University;
  • 关键词:喷丸强化 ; 函数 ; 有限元模型 ; 表层应力 ; 变形量 ; BBD
  • 英文关键词:shot peening;;function model;;FEM;;surface stress;;deformation;;BBD
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中南林业科技大学;中南大学;
  • 出版日期:2019-06-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(51475483);; 湖南省重点研发计划项目(2018NK2065,2016NK2142);; 湖南省高校科技创新团队支持计划项目(2014207);; 湖南省研究生科研创新项目(CX2018B451)~~
  • 语种:中文;
  • 页:BMJS201906027
  • 页数:9
  • CN:06
  • ISSN:50-1083/TG
  • 分类号:226-234
摘要
目的探究喷丸强化工艺后铝合金材料表面性能的变化规律,得到材料表层应力和变形与喷丸工艺参数间的对应关系。方法采用Box-Benhnken实验设计法(BBD),以喷丸压力、丸粒大小、喷射距离三因素为自变量,以表面残余应力与弹坑变形量为响应,设计了3因素3水平喷丸实验方案,并运用有限元仿真软件ANSYS/LS-DYNA建立多弹丸撞击铝合金靶材的有限元模型,依据实验方案获得表面应力值与弹坑处变形量。然后,使用Design-Expert软件对数值进行拟合,得到多元回归二次方程,运用响应面分析法(RSM)进行分析,讨论各因素之间的交互作用,同时,根据回归方程的方差分析结果,确定模型的拟合程度。最后,以7075-T651铝合金为靶材,进行喷丸验证实验,结合XRD应力测试与弹坑剖面光学显微观察,得到应力值和变形量,以检验模型的准确性。结果应力函数模型和变形函数模型的校正决定系数Adjusted R~2分别为90.13%、91.68%,应力计算值和实验值结果偏差小于5.5%;剖面晶粒变形显示靶材变形层与计算值吻合较好,表明函数模型具有较高的准确性。结论该函数模型能够快速准确地由材料表面应力或变形推导出喷丸工艺参数配置,这为喷丸表面应力和硬度强化提供多样性参考。
        The work aims to study the change rule of the surface properties of aluminum alloy after shot peening, and obtain the corresponding relationship between the surface material characteristics and SP parameters. Firstly, Box-Benhnken design method(BBD) was used to design 3-level and 3-factor shot peening experiment with shot peening pressure, projectile size and jet distance as independent variables and the surface residual stress and deformation as responses. The FEM of multi-projectile impact aluminum alloy sample was established by ANSYS/LS-DYNA. The surface stress and the deformation at the crater were obtained according to the experiment. Then, Design-Expert software was adopted to fit the values to obtain the multiple regression quadratic equations, and the response surface methodology(RSM) was used to analyze the interaction between the various factors. At the same time, according to analysis of variance of the function models, the degree of model-fitting was identified.Finally, with the 7075-T651 aluminum alloy as the sample, the shot peening test was carried out. Combined with the XRD stress test and the optical microscopic observation of the crater section, the stress value and the deformation value were obtained to verify the accuracy of the model. The adjusted R~2 of the stress function model and the deformation function model were 90.13% and 91.68%, respectively. The deviation between calculated stress value and experimental value was less than 5.5%. The deformation of the section showed that the deformed layer of the sample was approximately the same as calculation value. The result indicated that function model had high accuracy. The function model can quickly and accurately deduce the parameter combination of the SP from the surface stress or deformation of the material, which provides a diversity reference for the surface stress and hardness strengthening of SP.
引文
[1]钱涛,刘奋成,毛育青,等.固溶温度对CNTs/7075复合材料组织和力学性能的影响[J].材料热处理学报,2016,37(S1):17-21.QIAN Tao,LIU Fen-cheng,MAO Yu-qing,et al.Effect of solution temperature on microstructure and mechanical properties of CNTs/7075 composites fabricated by friction stir processing[J].Transactions of materials and heat treatment,2016,37(S1):17-21.
    [2]刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010,20(9):1705-1715.LIU Bing,PENG Chao-qun,WANG Ri-chu,et al.Recent development and prospects for giant plane aluminum alloys[J].Chinese journal of nonferrous metals,2010,20(9):1705-1715.
    [3]张允康,许晓静,罗勇,等.7075铝合金强化固溶T76处理后的拉伸与剥落腐蚀性能[J].稀有金属材料与工程,2012,41(S2):612-615.ZHANG Yun-kang,XU Xiao-jing,LUO Yong,et al.Tensile property and exfoliation corrosion of 7075 aluminum alloy after enhanced-solid-solution and T76 aging treatment[J].Rare metal materials and engineering,2012,41(S2):612-615.
    [4]HUANG X M,SUN J,LI J F.Effect of initial residual stress and machining-induced residual stress on the deformation of aluminum alloy plate[J].Strojniski vestnik/journal of mechanical engineering,2015,61(2):131-137.
    [5]YANG Y,LI M,LI K R.Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component[J].International journal of advanced manufacturing technology,2014,70(9-12):1803-1811.
    [6]刘金水,雷衡兵,高文理,等.铸造残余应力对铝合金副车架疲劳寿命的影响[J].湖南大学学报(自然科学版),2018,45(6):28-34.LIU Jin-shui,LEI Heng-bing,GAO Wen-li,et al.Effect of casting residual stress on fatigue life of aluminum alloy sub-frame[J].Journal of Hunan University(Natural Science),2018,45(6):28-34.
    [7]LAZZARIN P,LASSEN T,LIVIERI P.A notch stress intensity approach applied to fatigue life predictions of welded joints with different local toe geometry[J].Fatigue&fracture of engineering materials&structures,2010,26(1):49-58.
    [8]秦国华,林锋,叶海潮,等.基于残余应力释放的航空结构件加工变形模型与结构优化方法[J].工程力学,2018,35(9):214-222.QIN Guo-hua,LIN Feng,YE Hai-chao,et al.Machining deformation model and structural optimization of aeronautical components based on relaxation of initial residual rtress[J].Engineering mechanics,2018,35(9):214-222.
    [9]昌江郁,陈送义,陈康华,等.7056铝合金厚板轧制变形不均匀性的实验研究与数值模拟[J].中南大学学报(自然科学版),2018,49(8):1914-1921.CHANG Jiang-yu,CHEN Song-yi,CHEN Kang-hua,et al.Experimental study and numerical simulation of the deformation non-uniformity of 7056 aluminum alloy thick plate rolling[J].Journal of Central South University(Science and Technology),2018,49(8):1914-1921.
    [10]李占明,王红美,孙晓峰,等.高速微粒轰击对微弧氧化铝合金疲劳性能的影响[J].稀有金属材料与工程,2018,47(7):2179-2184.LI Zhan-ming,WANG Hong-mei,SUN Xiao-feng,et al.Effect of high-speed particles bombarding pre-treatment on the fatigue properties of micro-arc oxidation aluminum alloy[J].Rare metal materials and engineering,2018,47(7):2179-2184.
    [11]OWOLABI G M,BOLLING D T,ODESHI A G,et al.The effects of specimen geometry on the plastic deformation of AA 2219-T8 aluminum alloy under dynamic impact loading[J].Journal of materials engineering&performance,2017,26(12):1-10.
    [12]MOLINARI A,SANTULIANA E,CRISTOFOLINI I,et al.Surface modifications induced by shot peening and their effect on the plane bending fatigue strength of a Cr-Mo steel produced by powder metallurgy[J].Materials science&engineering A,2011,528(6):2904-2911.
    [13]CHEN B,HUANG B,LIU H,et al.Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 6061 aluminum alloy[J].Journal of materials research,2014,29(24):3002-3010.
    [14]TAKAHASHI K,OSEDO H,SUZUKI T,et al.Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening[J].Engineering fracture mechanics,2018,193:151-161.
    [15]王玖,张志远,方雄.弹丸直径和速度对喷丸残余应力分布的影响分析[J].材料科学与工程学报,2013,31(4):588-591.WANG Jiu,ZHANG Zhi-yuan,FANG Xiong.Effect of diameter and the influence of projectile diameter and velocity on residual stress distribution of shot peening[J].Journal of materials science and engineering,2013,31(4):588-591.
    [16]李源,雷丽萍,曾攀.弹丸束喷丸有限元模型数值模拟及试验研究[J].机械工程学报,2011,47(22):43-48.LI Yuan,LEI Li-ping,ZENG Pan.Shot stream finite element model for shot peening numerical simulation and its experimental study[J].Chinese journal of mechanical engineering,2011,47(22):43-48.
    [17]GAO Y K,YAO M,LI J K.An analysis of residual stress fields caused by shot peening[J].Metallurgical and materials transactions A(physical metallurgy and,materials Science),2002,33(6):1775-1778.
    [18]GHASEMI A,HASSANI-GANGARAJ S M,MAHMOU-DI A H,et al.Shot peening coverage effect on residual stress profile by FE random impact analysis[J].Surface engineering,2016,32(11):861-870.
    [19]MHAEDE M.Influence of surface treatments on surface layer properties,fatigue and corrosion fatigue performance of AA7075 T73[J].Materials&design,2012,41:61-66.
    [20]刘雪梅,顾佳巍,祁国栋,等.基于CFD-DEM仿真的喷丸工艺参数优选[J].表面技术,2018,47(1):8-15.LIU Xue-mei,GU Jia-wei,QI Guo-dong,et al.Optimization of shot peening parameters based on CFD-DEMsimulation[J].Surface technology,2018,47(1):8-15.
    [21]关艳英,王治业,鲁世红,等.基于正交试验的超声波喷丸成形工艺参数分析及弧高值预测[J].宇航材料工艺,2018,48(2):7-12.GUAN Yan-ying,WANG Zhi-ye,LU Shi-hong,et al.Analysis of ultrasonic shot peening parameters and prediction of formed arch height based on orthogonal test[J].Aerospace materials technology,2018,48(2):7-12.
    [22]NAM Y S,JEONG Y I,SHIN B C,et al.Enhancing surface layer properties of an aircraft aluminum alloy by shot peening using response surface methodology[J].Materials&design,2015,83:566-576.
    [23]MIAO H Y,DEMERS D,LAROSE S,et al.Experimental study of shot peening and stress peen forming[J].Journal of materials processing technology,2010,210(15):2089-2102.
    [24]李鹏,刘道新,关艳英,等.喷丸强化对新型7055-T7751铝合金疲劳性能的影响[J].机械工程材料,2015,39(1):86-89.LI Peng,LIU Dao-xin,GUAN Yan-ying,et al.Effect of shot peening on fatigue property of new aluminum alloy7055-T7751[J].Materials for mechanical engineering,2015,39(1):86-89.
    [25]张洪伟,陈家庆,张以都.基于多丸粒模型的喷丸表面强化过程数值模拟[J].塑性工程学报,2012,19(6):118-125.ZHANG Hong-wei,CHEN Jia-qing,ZHANG Yi-du.Numerical simulation of shot peening process based on multiple shot model[J].Journal of plasticity engineering,2012,19(6):118-125.
    [26]陈家伟,廖凯,车兴飞,等.铝合金喷丸应力-形变的仿真分析与实验[J].表面技术,2018,48(9):240-249.CHEN Jia-wei,LIAO Kai,CHE Xing-fei,et al.Simulation and experiment study of surface stress-deformation by shot peening on Al-based alloy[J].Surface technology,2018,48(9):240-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700