深冷空分装置不同产品纯度下的产品能耗
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy consumption under different product purities in cryogenic air separation unit
  • 作者:江健荣 ; 冯霄 ; 段明哲 ; 张志刚
  • 英文作者:JIANG Jian-rong;FENG Xiao;DUAN Ming-zhe;ZHANG Zhi-gang;School of Chemical Engineering and Technology,Xi'an Jiaotong University;Shaanxi Coal Chemical Industry Technology Research Institute Co.,Ltd.;
  • 关键词:深冷空分 ; Aspen ; Plus ; 能耗 ; 产品纯度
  • 英文关键词:cryogenic air separation;;Aspen Plus;;energy consumption;;product purity
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:西安交通大学化学工程与技术学院;陕西煤业化工技术研究院有限责任公司;
  • 出版日期:2018-04-25 10:19
  • 出版单位:现代化工
  • 年:2018
  • 期:v.38;No.380
  • 基金:国家重点研发计划项目(2017YFB0602600)
  • 语种:中文;
  • 页:XDHG201806046
  • 页数:4
  • CN:06
  • ISSN:11-2172/TQ
  • 分类号:204-207
摘要
利用Aspen Plus软件对深冷空分工艺流程建立了模拟模型,通过改变工况进行模拟分析,得到产品能耗与氧气体积分数的关系。能耗随氧气体积分数的降低而降低,二者之间的关系式可以拟合为一个4次多项式,为合成氨生产过程的整体优化节能奠定了基础。
        A simulation model for cryogenic air separation process is established by using Aspen Plus software.The relationship between the product energy consumption and the volume fraction of oxygen is obtained by simulation under different operating conditions. The product energy consumption decreases with the decrease of the volume fraction of oxygen.The relationship between them can be fitted as a four-order polynomial,which lays the foundation for energy optimization of synthetic ammonia process.
引文
[1]Smith A R,Klosek J.A review of air separation technologies and their integration with energy conversion processes[J].Fuel Processing Technology,2001,70(2):115-134.
    [2]高聚忠.煤气化技术的应用与发展[J].洁净煤技术,2013,19(1):65-71.
    [3]汪寿建.现代煤气化技术发展趋势及应用综述[J].化工进展,2016,35(3):653-664.
    [4]Watanabe H,Otaka M.Numerical simulation of coal gasification in entrained flow coal gasifier[J].Fuel,2006,85(12/13):1935-1943.
    [5]Darde A,Prabhakar R,Tranier J P,et al.Air separation and flue gas compression and purification units for oxy-coal combustion systems[J].Energy Procedia,2011,4(1):966-971.
    [6]Smith A R,Klosek J.A review of air separation technologies and their integration with energy conversion processes[J].Fuel Processing Technology,2001,70(2):115-134.
    [7]Jiang L,Biegler L T,Fox V G.Simulation and optimization of pressure-swing adsorption systems for air separation[J].Aiche Journal,2010,49(5):1140-1157.
    [8]魏玺群,陈健.变压吸附气体分离技术的应用和发展[J].低温与特气,2002,20(3):1-5.
    [9]Tan X,Liu Y,Li K.Mixed conducting ceramic hollow-fiber membranes for air separation[J].Aiche Journal,2005,51(7):1991-2000.
    [10]Coombe H S,Nieh S.Polymer membrane air separation performance for portable oxygen enriched combustion applications[J].Energy Conversion&Management,2007,48(5):1499-1505.
    [11]熊杰,赵海波,郑楚光.深冷空分系统的过程模拟、优化及分析[J].低温工程,2011,(3):39-43.
    [12]Ham L V V D,Kjelstrup S.Exergy analysis of two cryogenic air separation processes[J].Energy,2010,35(12):4731-4739.
    [13]李晓黎,亢万忠.大型空分装置在煤化工中的应用与发展[J].化肥工业,2011,38(5):8-11.
    [14]Cornelissen R L,Hirs G G.Exergy analysis of cryogenic air separation[J].Energy Conversion&Management,1998,39(16):1821-1826.
    [15]Amann J M,Kanniche M,Bouallou C.Natural gas combined cycle power plant modified into an O/CO cycle for CO capture[J].Energy Conversion&Management,2009,50(3):510-521.
    [16]陈彩霞.全低压空分装置流程与精馏过程的模拟分析[D].武汉:华中科技大学,2008.
    [17]韩冬,段伦博,段钰锋,等.富氧燃烧全流程建模及系统优化[J].煤炭学报,2013,38(12):2241-2246.
    [18]Aspen Plus Version 8.6 User Guide[M].Boston:Aspen Tech Inc,2000.
    [19]李化治.制氧技术[M].北京:冶金工业出版社,2009.
    [20]游伟,王耀,孔秋生,等.煤制合成氨装置能耗分析与节能方向[J].化肥设计,2014,(2):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700