低成本聚合物微流控芯片加工技术综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on low-cost fabrication technology for polymer microfluidic chip
  • 作者:范一强 ; 王洪亮 ; 张亚军
  • 英文作者:FAN Yiqiang;WANG Hongliang;ZHANG Yajun;School of Mechanical and Electrical Engineering,Beijing University of Chemical Science;
  • 关键词:聚合物微流控芯片 ; 纸基微流控芯片 ; 低成本微流控芯片
  • 英文关键词:polymer microfluidic chip;;paper-based microfluidic chip;;low-cost microfluidic chip
  • 中文刊名:CGQJ
  • 英文刊名:Transducer and Microsystem Technologies
  • 机构:北京化工大学机电工程学院;
  • 出版日期:2019-05-08
  • 出版单位:传感器与微系统
  • 年:2019
  • 期:v.38;No.327
  • 语种:中文;
  • 页:CGQJ201905001
  • 页数:5
  • CN:05
  • ISSN:23-1537/TN
  • 分类号:7-11
摘要
针对传统微流控芯片加工方法成本高昂、耗时长的问题,近年来出现了多种低成本的微流控芯片加工方法,在聚合物、纸等材料上加工、完成了能够满足其应用需求的微流控芯片。对当前各类基于聚合材料的低成本微流控芯片加工技术进行了梳理和总结,并对未来低成本微流控芯片的发展进行了展望。
        Aiming at the problem of high-cost and long time consuming,the conventional fabrication technology of microfluidic chip,in recent years,various low-cost fabrication technologies for the microfluidics based on polymer or paper materials are used. Various materials and fabrication technologies for low-cost microfluidic chip,low-cost microfluidics is outlooked.
引文
[1] MANZ A,GRABER N,WIDMER H M. Miniaturized total chemical analysis systems:A novel concept for chemical sensing[J].Sensors&Actuators B:Chemical,1990,1(1-6):244-248.
    [2] UZEL S G,PAVESI A,KAMM R D. Microfabrication and microfluidics for muscle tissue models[J]. Progress in Biophysics&Molecular Biology,2014,115(2-3):279-293.
    [3] MCDONALD J C,DUFFY D C,ANDERSON J R,et al. Fabrication of microfluidic systems in poly(dimethylsiloxane)[J]. Electro-phoresis,2005,21(1):27-40.
    [4] CAI J,JIANG J,GAO F,et al. Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2laser ablation[J]. Microsystem Technologies,2017,23(10):5063-5069.
    [5] KIM A A,KUSTANOVICH K,BARATIAN D,et al. SU—8 freestanding microfluidic probes[J]. Biomicrofluidics,2017,11(1):014112-014118.
    [6] YAMADA K,SHIBATA H,SUZUKI K,et al. Toward practical application of paper-based microfluidics for medical diagnostics:State-of-the-art and challenges[J]. Lab on a Chip,2017,17(7):1206-1249.
    [7] VALENTIN T M,LEGGETT S E,CHEN P Y,et al. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics[J]. Lab on a chip,2017,15(7):504-523.
    [8] DUFFY D C,MCDONALD J C,SCHUELLER O J,et al. Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane)[J].Analytical Chemistry,1998,70(23):4974-4984.
    [9] NGE P N,ROGERS C I,WOOLLEY A T. Advances in microfluidic materials,functions,integration,and applications[J]. Chemical Reviews,2013,113(4):2550-2583.
    [10] PENG R,LI D. Electrokinetic motion of single nanoparticles in single PDMS nanochannels[J]. Microfluidics&Nanofluidics,2017,21(1):12-25.
    [11] ISIKSACAN Z,GULER M T,AYDOGDU B,et al. Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation[J]. Journal of Micromechanics and Microengineering,2016,26(3):035008-035012.
    [12] LEI K F,CHANG C H,CHEN M J. A paper/PMMA hybrid 3D cell culture microfluidic platform for the Study of Cellular Crosstalk[J]. ACS Applied Materials&Interfaces,2017,9(15):13092-13099.
    [13] SHAMSI A,SHAMLOO A,MOHAMMADALIHA N,et al. High throughput blood plasma separation using a passive PMMA microfluidic device[J]. Microsystem Technologies,2015,22(10):2447-2452.
    [14] YOUNG E W,BERTHIER E,GUCKENBERGER D J,et al.Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays[J]. Analytical Chemistry,2011,83(4):1408-1417.
    [15] JENA R K,YUE C Y,LAM Y C. Micro fabrication of cyclic olefin copolymer(COC)based microfluidic devices[J]. Microsystem Technologies,2012,18(2):159-166.
    [16] XU C,CAI L,ZHONG M,et al. Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink[J]. RSC Adv,2015,5(7):4770-4773.
    [17] DUNGCHAI W,CHAILAPAKUL O,HENRY C S. A low-cost,simple,and rapid fabrication method for paper-based microfluidics using wax screen-printing[J]. The Analyst,2011,136(1):77-82.
    [18] HE Y,WU W B,FU J Z. Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer[J]. RSC Adv,2015,5(4):2694-2701.
    [19] CARRILHO E,MARTINEZ A W,WHITESIDES G M. Understanding wax printing:A simple micropatterning process for paper-based microfluidics[J]. Analytical Chemistry,2009,81(16):7091-7095.
    [20] LU Y,SHI W,JIANG L,et al. Rapid prototyping of paper-based microfluidics with wax for low-cost,portable bioassay[J]. Electrophoresis,2009,30(9):1497-1500.
    [21] SAMEENOI Y,NONGKAI P N,NOUANTHAVONG S,et al.One-step polymer screen-printing for microfluidic paper-based analytical device(mu PAD)fabrication[J]. The Analyst,2014,139(24):6580-6588.
    [22] SAN P T,BAYNES C,CHO S I,et al. Paper microfluidics for red wine tasting[J]. RSC advances,2014,46(4):24356-24362.
    [23] RAMDZAN A N,ALMEIDA M I,MCCULLOUGH M J,et al.Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes[J]. Analytica Chimica Acta,2016,919:47-54.
    [24] YANG L,GRITSENKO D,FENG S,et al. Detection of heavy metal by paper-based microfluidics[J]. Biosensors&Bioelectronics,2016,83:256-266.
    [25] TORUL H,CIFTCI H,CETIN D,et al. Paper membrane-based SERS platform for the determination of glucose in blood samples[J].Analytical&Bioanalytical Chemistry,2015,407(27):8243-8251.
    [26] DUNGCHAI W,CHAILAPAKUL O,HENRY C S. Electrochemical detection for paper-based microfluidics[J]. Analytical Chemistry,2009,81(14):5821-5826.
    [27] SONGJAROEN T,DUNGCHAI W,CHAILAPAKUL O,et al.Blood separation on microfluidic paper-based analytical devices[J].Lab on a Chip,2012,12(18):3392-3398.
    [28] SIA S K,WHITESIDES G M. Microfluidic devices fabricated in poly(dimethylsiloxane)for biological studies[J]. Electrophoresis,2003,24(21):3563-3576.
    [29] NATARAJAN S,CHANGYEN D A,GALE B K. Large-area,highaspect-ratio SU-8 molds for the fabrication of PDMS microfluidic devices[J]. Journal of Micromechanics&Microengineering,2008,18(4):045021-045031.
    [30] WANG Z K,ZHENG H Y,LIM R Y H,et al. Improving surface smoothness of laser-fabricated microchannels for microfluidic application[J]. Journal of Micromechanics and Microengineering,2011,21(9):095008-095021.
    [31] GARCIA-CORDERO J L,KURZBUCH D,BENITO-Lopez F,et al. Optically addressable single-use microfluidic valves by laser printer litho-graphy[J]. Lab on a chip,2010,10(20):2680-2687.
    [32] BSOUL A,PAN S,CRETU E,et al. Design,microfabrication,and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-printer platform technology with disposable microfluidic chip[J]. Lab on a Chip,2016,16(17):3351-3361.
    [33] PEARCE J M,ANZALONE N C,HELDT C L. Open-source wax reprap 3D printer for rapid prototyping paper-based microfluidics[J]. Journal of Laboratory Automation,2016,21(4):510-516.
    [34] WEI H W,LI Z,HU J,et al. Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping[J]. Journal of Micromechanics&Microengineering,2015,25(10):105015-105025.
    [35] BHATTACHARJEE N,URRIOS A,KANG S,et al. The upcoming3D-printing revolution in microfluidics[J]. Lab on a Chip,2016,16(10):1720-1742.
    [36] SHANGGUAN J W,LIU Y,PAN J B,et al. Microfluidic PDMS on paper(POP)devices[J]. Lab on a chip,2016,17(1):120-127.
    [37] TRAN V T,WEI Y,WEI L,et al. Preparing of interdigitated microelectrode arrays for AC electrokinetic devices using inkjet printing of silver nanoparticles ink[J]. Micromachines,2017,8(4):106-122.
    [38] DIXON C,LAMANNA J,WHEELER A R. Printed microfluidics[J].Advanced Functional Materials,2017,27(11):1604824-1604834.
    [39] DONG H,LI C M,ZHANG Y F,et al. Screen-printed microfluidic device for electrochemical immunoassay[J]. Lab on a Chip,2007,7(12):1752-1758.
    [40] HE Y,WU W B,FU J Z. Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer[J]. RSC Advances,2014,5(4):2694-2701.
    [41] GAAL G,MENDES M,ALMEIDA T P D,et al. Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing[J]. Sensors&Actuators B:Chemical,2017,242:35-40.
    [42] KATAOKAEM,MURER R C,SANTOS J M,et al. Simple,expendable,3D-printed microfluidic systems for sample preparation of petroleum[J]. Analytical Chemistry,2017,89(6):3460-3467.
    [43] LEE I H,CHO D W. Micro-stereolithography photopolymer solidification patterns for various laser beam exposure conditions[J]. International Journal of Advanced Manufacturing Technology,2003,22(5-6):410-416.
    [44] SZYDZIK C,NIEGO B,DALZELL G,et al. Fabrication of complex PDMS microfluidic structures and embedded functional substrates by one-step injection moulding[J]. RSC Advances,2016,6(91):87988-87994.
    [45] HANSEN T S,SELMECZI D,LARSEN N B. Fast prototyping of injection molded polymer microfluidic chips[J]. Journal of Micromechanics and Microengineering, 2010, 20(1):015020-015029.
    [46] NAYAK N C,YUE C Y,LAM Y C,et al. Thermal bonding of PMMA:Effect of polymer molecular weight[J]. Microsystem Technologies,2010,16(3):487-491.
    [47] FAN Y,LI H,YI Y,et al. PMMA to Polystyrene bonding for polymer based microfluidic systems[J]. Microsystem Technologies,2014,20(1):59-64.
    [48] FAN Y,LIU Y,LI H,et al. Printed wax masks for 254 nm deepUV pattering of PMMA-based microfluidics[J]. Journal of Micromechanics&Microengineering,2012,22(2):027001-027004.
    [49] LIMA R S,LEAO P A,PIAZZETTA M H,et al. Sacrificial adhesive bonding:A powerful method for fabrication of glass microchips[J]. Scientific Reports,2015,5:13276-13284.
    [50] FAN Y,LIU S,ZHANG Y. Direct bonding of polymer/glassbased microfluidic chips with dry film photoresist[J]. Microsystem Technologies,2017,24(3):1659-1665.
    [51] GONG X,YI X,XIAO K,et al. Wax-bonding 3D microfluidic chips[J]. Lab on a Chip,2010,10(19):2622-2627.
    [52] CHU M,NGUYEN T T,LEE E K,et al. Plasma free reversible and irreversible microfluidic bonding[J]. Lab on a Chip,2016,17(2):267-273.
    [53] ZHU Z,CHEN P,LIU K,et al. A versatile bonding method for PDMS and SU-8 and its application towards a multifunctional microfluidic device[J]. Micromachines,2016,7(12):230-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700