基于EwE模型的三疣梭子蟹、凡纳滨对虾和梭鱼混养系统的能流分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy Flux Analysis of Portunus trituberculatus-Litopenaeus vannamei-Liza haematocheli Polyculture System Based on EwE Model
  • 作者:奉杰 ; 田相利 ; 董双林 ; 何瑞鹏 ; 张东旭 ; 王润
  • 英文作者:FENG Jie;TIAN Xiang-Li;DONG Shuang-Lin;HE Rui-Peng;ZHANG Dong-Xu;WANG Run;The Key Laboratory of Mariculture(Ocean University of China),Ministry of Education;
  • 关键词:能量流动 ; 营养结构 ; EwE ; 混养 ; 三疣梭子蟹 ; 凡纳滨对虾 ; 梭鱼
  • 英文关键词:energy flow;;trophic structure;;EwE;;polyculture;;Portunus trituberculatus;;Litopenaeus vannamei;;Liza haematocheli
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:海水养殖教育部重点实验室(中国海洋大学);
  • 出版日期:2018-02-26
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2018
  • 期:v.48;No.279
  • 基金:国家“十二五”科技支撑计划项目(2011BAD13B03);; 山东省杰出青年基金项目(JQ201009)资助~~
  • 语种:中文;
  • 页:QDHY201804004
  • 页数:13
  • CN:04
  • ISSN:37-1414/P
  • 分类号:27-39
摘要
以三疣梭子蟹(Portunus trituberculatus)、凡纳滨对虾(Litopenaeus vannamei)和梭鱼(Liza haematocheli)混养池塘生态系统为研究对象,利用Ecopath with ecosim(EwE)模型软件,构建了由17个生物功能组组成的能量流动模型。研究表明,系统由5个营养级组成,其中第Ⅰ、Ⅱ营养级的能量流通量占系统总能量流通量的比例分别为63.47%和35.39%。系统大部分消费者位于营养级Ⅱ左右,食物链结构多呈"线状"。系统总能量流中碎屑功能组占74.58%,初级生产者占25.42%,其中,碎屑功能组中的人工饵料生物能占系统总能量来源22.31%,在系统总能量流中起重要作用。系统Finn’s循环指数(FCI)为21.24%,连接指数(CI)和系统杂食指数(SOI)分别为0.28和0.06,相对聚合度(A/C)为0.45。从生态营养学效率(EE)值来看,系统对来自碎屑功能组的能量利用率较高,对来自初级生产者微型、微微型浮游植物的能量利用效率较低。大量初级生产者能量未被利用而直接流向碎屑功能组,表明该系统的营养级结构还能进一步优化。建议提高梭鱼的放养密度或引入合适的滤食性生物进行搭配养殖,进一步提高系统的能量利用效率和混合养殖效益。
        Using the Ecopath with ecosim(EwE)modeling software,a trophic structure model of Portunus trituberculatus-Litopenaeus vannamei-Liza haematocheli polyculture pond ecosystem was constructed.The model contained 17 functional groups.The results showed that the polyculture system was composed of 5 aggregated trophic levels.The system throughput on trophic level I and Ⅱ accounted for 63.47% and 35.39% of the total system throughput(TST),respectively.The majority of consumers were concentrated at trophic level Ⅱ.The system food chain was more like a linear rather than a"web like"structure.The energy originated from detritus groups and the groups of primary producers contributed 74.58% and 25.42%to the total energy flux,respectively,therein to,the detritus groups of artificial feeds of Aloidis laevis and shrimp feeds played important roles in running the system energy flow,which contributed 22.31% to the total.The Finn's cycling index(FCI)in the system was21.24% and the value of connectance index(CI)and system omnivory index(SOI)were 0.28 and 0.06,respectively.The relative ascendancy was 0.45.The ecotrophic efficiency(EE)values of detritus groups were high in the system.However,the EEvalue of the two groups of primary producers of nano-phytoplankton and pico-phytoplankton was relatively low.Large amount of energy from these two groups flowed into detritus groups directly,suggesting the optimizing potentials for this system.As a result,we proposed a higher farming density of L.haematocheli or a filter feeder introduction to this polyculture system to exploit its potential productivity,thus to improve further the system energy utilization efficiency and synthetic benefit.
引文
[1]Li X,Li J,Wang Y,et al.Aquaculture industry in China:current state,challenges,and outlook[J].Reviews in Fisheries Science,2011,19:187-200.
    [2]FAO.Aquaculture development.4.Ecosystem approach to aquaculture[R].Rome:FAO Technical Guidelines for Responsible Fisheries,2010:53.
    [3]董双林.系统功能视角下的水产养殖业可持续发展[J].中国水产科学,2009,16(5):98-805.Dong S L.On sustainable development of aquaculture:A functional perspective[J].Journal of Fishery Sciences of China,2009,16(5):98-805.
    [4]董佳.三疣梭子蟹(Portunus trituberculatus)池塘混养系统结构优化和氮磷收支的实验研究[D].青岛:中国海洋大学,2013.Dong J.Studies on the Optimization and Nitrogen and Phosphorus Budgets of Polyculture System of Portunus trituberculatus Ponds[D].Qingdao:Ocean University of China,2013.
    [5]班文波,田相利,董双林,等.三疣梭子蟹、凡纳滨对虾、菲律宾蛤仔和江蓠混养结构优化的实验研究[J].河北渔业,2015(8):12-18.Ban W B,Tian X L,Dong S L,et al.An experimental study on structure optimization for polyculture of Portunus trituberculatus,Litopenaeus vannamei,Ruditapes philippinarum,and Gracilaria lichevoides[J].Hebei Fisheries,2015(8):12-18.
    [6]周演根,马甡,苏跃朋,等.三疣梭子蟹与凡纳滨对虾混养实验研究[J].中国海洋大学学报(自然科学版),2010,40(3):11-16.Zhou Y G,Ma S,Su Y P,et al.Studies on the effects of polyculture of Litopenaeus vannamei with Portunus trituberculatus[J].Periodical of Ocean University of China,2010,40(3):11-16.
    [7]奉杰,田相利,董双林,等.不同三疣梭子蟹混养系统能量收支的研究[J].中国海洋大学学报(自然科学版),2015,45(3):39-47.Feng,J,Tian,X L,Dong,S L,et al.Studies on the energy budget of different polyculture systems of swimming crab[J].Periodical of Ocean University of China,2015,45(3):9-47.
    [8]奉杰.不同三疣梭子蟹混养系统能量收支和有机碳收支的实验研究[D].青岛:中国海洋大学,2014.Feng J.Studies on the Energy Budgets and Organic Carbon Budgets of Polyculture System of Portunus trituberculatus Ponds[D].Qingdao:Ocean University of China,2014.
    [9]Zhang K,Tian X L,Dong S L,et al.An experimental study on the budget of organic carbon in polyculture ecosystems of swimming crab with white shrimp and short-necked clam[J].Aquaculture,2016.451,58-64.
    [10]班文波,田相利,董双林,等.四种三疣梭子蟹养殖系统的能值评价[J].中国海洋大学学报(自然科学版),2016,46(3):31-40.Ban W B,Tian X L,Dong S L,et al.Emergy evaluation of four Portunus trituberculatus aquaculture systems[J].Periodical of Ocean University of China,2016,46(3):31-40.
    [11]董佳,田相利,董双林,等.三疣梭子蟹和凡纳滨对虾混养系统的氮磷收支的研究[J].中国海洋大学学报(自然科学版),2013,43(12):16-24.Dong J,Tian X L,Dong S L,et al.Study on nitrogen and phosphorus budget in polyculture system of Litopenaeus vannamei with Portunus trituberculatus[J].Periodical of Ocean University of China,2013,43(12):16-24.
    [12]张凯,田相利,董双林,等.三疣梭子蟹、凡纳滨对虾和菲律宾蛤仔混养系统氮磷收支的研究[J].中国海洋大学学报(自然科学版),2015,45(2):44-53.Zhang K,Tian X L,Dong S L,et al.Nitrogen and phosphorus budgets of polyculture system of Portunus trituberculatus,Litopenaeus vannamei and Ruditapes philippinarum[J].Periodical of Ocean University of China,2015,45(2):44-53.
    [13]班文波.三疣梭子蟹不同池塘混养系统的结构优化、氮磷收支和能值分析[D].青岛:中国海洋大学,2016.Ban W B.Optimization,Nitrogen and Phosphorus Budgets and Emergy Analysis of Different Portunus trituberculatus Polyculture Systems[D].Qingdao:Ocean University of China,2016.
    [14]张凯.三疣梭子蟹(Portunus trituberculatus)混养系统有机碳收支以及细菌生产力与代谢功能的研究[D].青岛:中国海洋大学,2014.Zhang K.Study on Total Organic Carbon Budgets and Bacterial Productivity and Metabolism of Polyculture System of Portunus trituberculatus,Litopenaeus vannamei and Ruditapes philippinarum[D].Qingdao:Ocean University of China,2014.
    [15]傅彩萍,郑忠明,金忠文,等.“底充式增氧”技术对梭子蟹养殖池塘水质环境及浮游植物群落结构的影响[J].海洋学研究,2012,30:74-81.Fu C P,Zheng Z M,Jin Z W,et al.Effects of“submerged aeration system”on water quality and phytoplankton community structure in Portunus trituberculatus culture ponds[J].Journal of Marine Sciences,2012,30:74-81.
    [16]金中文,郑忠明,傅彩萍,等.梭子蟹养殖池塘浮游生物群落结构的初步分析[C].厦门:2011年中国水产学会学术年会,2011.Jin Z W,Zheng Z M,Fu C P,et al.Analysis of the plankton community structure of the Portunus trituberculatus farming ponds[C].Xiamen:2011Annual Academic Conference of China Society of Fisheries,2011.
    [17]毛欣欣,蒋霞敏,王春琳,等.三疣梭子蟹两种养殖模式浮游动物调查[J].生物学杂志,2014,31(4):38-41.Mao X X,Jiang X M,Wang C L,et al.Investigation of zooplankton in two polyculture modes as dominant stocking species of the swimming crab Portunus trituberculatus[J].Journal of Biology,2014,31(4):38-41.
    [18]张恒庆,初航,温丹,等.三疣梭子蟹养殖池塘水体中异养细菌菌群特征的研究[J].辽宁师范大学学报(自然科学版),2008,31:221-224.Zhang H Q,Chu H,Wen D,et al.Investigation of morphological diversity of heterotrophic bacteria from water column of Portunus trituperculatus rearing pond[J].Journal of Liaoning Normal University(Natural Science Edition),2008,31:221-224.
    [19]孙苏燕.培养与免培养结合研究三疣梭子蟹养殖池塘细菌多样性[D].宁波:宁波大学,2011.Sun S Y.Investigation on Bacterial Diversity in Portunus trituberculatus Rearing Pond by Cultivation-Dependent and Independent Approaches[D].Ningbo:Ningbo University,2011.
    [20]Zhang K,Tian X L,Dong S L,et al.Variation of functional diversity of microbial communities in water of polyculture of Portunus trituberculatus,Litopenaeus vannamei and Ruditapes philippinarum[J].The Israeli Journal of Aquaculture Bamidgeh,2015,67.
    [21]Colléter M,Valls A,Guitton J,et al.Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository[J].Ecological Modelling,2015,302:42-53.
    [22]Polovina J J.Model of a coral reef ecosystems I.The ECOPATH model and its application to French Frigate Shoals[J].Coral Reefs,1984a,3(1):1-11.
    [23]Polovina J J.An overview of the ECOPATH model[J].Fishbyte,1984b,2(2):5-7.
    [24]Ulanowicz R E.Growth and Development:Ecosystem Phenomenology[M].New York:Springer Verlag,1986:203.
    [25]仝龄.Ecopath—一种生态系统能量平衡评估模式[J].海洋水产研究,1999,20(2):102-107.Tong L.Ecopath model—a mass-balance modeling for ecosystem estimation[J].Marine Fisheries Research,1999,20(2):102-107.
    [26]李德尚,杨红生,王吉桥,等.一种池塘陆基实验围隔[J].青岛海洋大学学报,1998,28(2):199-204.Li D S,Yang H S,Wang J Q,et al.A device of land-based experimental enclosure used in ponds[J].Journal of Ocean University of Qingdao,1998,28(2):199-204.
    [27]Christensen V,Pauly D.A guide to the Ecopath II Software Systems(version 2.1),ICLARM Software 6[R].Manila:International Center for Living Aquatic Resources Management(ICLARM),1992:72.
    [28]Christensen V,Pauly D.Ecopath II:a software for balancing steady-state ecosystem models and calculating network characteristics[J].Ecological Modelling,1992b,61(3-4):169-186.
    [29]Christensen V,Walters C J,Pauly D.Ecopath with Ecosim:A User’s Guide(Version 5.1)[R].Canada:Fisheries Centre,University of British Columbia,Vancouver,2005:154.
    [30]王骥.浮游植物的初级生产力与黑白瓶测氧法[J].淡水渔业,1980,3:24-28.Wang J.Primary productivity of phytoplankton and measurement of oxygen in black and white bottles[J].Freshwater Fisheries,1980,3:24-28.
    [31]刘国才,李德尚,董双林,等.对虾养殖围隔生态系中的细菌碳代谢[J].水产学报,1999,23(4):357-362.Liu G C,Li D S,Dong S L,et al.Metabolism of bacterial carbon in shrimp cultural enclosure ecosystems[J].Journal of Fisheries of China,1999,23(4):357-362.
    [32]Moriarty D J.Bacterial productivity in ponds used for culture of Penaeid Prawns[J].Microbial Ecology,1986,12(3):259-269.
    [33]Richman S,Dodson S I.The effect of food quality on feeding and respiration by daphnia and diaptomus[J].Limnology and Oceanography,1983,28(5):948-956.
    [34]Straile D.Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration,predatorprey weight ratio and taxonomic group[J].Limnology and Oceanography,1997,42:1375-1385.
    [35]Winberg G G.Some Interim Results of Soviet IBP Investigations on Lakes[M].IBP-UNESCO symposium on productivity problems of freshwaters,Kazimierz,Poland,Polish Scientific Publisher,1972:363-381.
    [36]林群.黄渤海典型水域生态系统能量传递与功能研究[D].青岛:中国海洋大学,2012.Lin Q.Studies on the Ecosystem Energy Transfer and Function in the Typical Waters of Yellow and Bohai Sea[D].Qingdao:Ocean University of China,2012.
    [37]齐明,申玉春,朱春华,等.凡纳滨对虾不同阶段摄食人工饲料生长效率的初步研究[J].渔业现代化,2010,37(2):34-37.Qi M,Shen Y H,Zhu C H,et al.A primary study on conversion efficiency of Litopenaeus vannamei feed on artificial diets[J].Fishery Modernization,2010,37(2):34-37.
    [38]杨辉,马甡,苏跃朋.投喂新鲜、冷冻、烘干菲律宾蛤肉对三疣梭子蟹摄食、代谢及生长的影响[J].中国海洋大学学报(自然科学版),2010,40:65-70.Yang H,Ma S,Su Y P.Differences of food consumption,metabolism and growth of the crab(Portunus trituberculatus)fed fresh,frozen and oven-dried clam(Ruditapes philippinarum)meat[J].Periodical of Ocean University of China,2010,40:65-70.
    [39]李德尚,卢敬让,徐宁,等.一种适于现场测定的池塘底泥呼吸器[J].青岛海洋大学学报,1998,28(2):205-209.Li D S,Lu J R,Xu N,et al.A device of in situ sediment-respiration-determing apparatus used in pond[J].Journal of Ocean University of Qindao,1998,28(2):205-209.
    [40]张天文.对虾高位池精养模式和生态养殖模式中碳流通特征的解析一Ecopath with Ecosim在养殖生态系统中应用的初步研究[D].青岛:中国海洋大学,2011.Zhang T W.The model of Carbon flux in intensive Penaeid shrimp culture and ecological cultivation[D].Qingdao:Ocean University of China,2011.
    [41]Hagrave B T.Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content[J].Limnology and Oceanography,1972,17(4):583-586.
    [42]李军,杨纪明.梭鱼幼鱼的生态生长效率研究[J].海洋科学,1995,42(1):68-69.Li J,Yang J M.Experiments on energy flow of a simple food chain[J].Marine Sciences,1995,42(1):68-69.
    [43]李明德.中国梭鱼42年来的研究概况[J].海洋通报,1993(6):81-86.Li M D.Researches on Chinese Mullet Liza haematocheila during past forty-two years[J].Mering Science Bulletin,1993(6):81-86.
    [44]刘国才,李德尚.对虾池悬浮颗粒附着细菌的研究[J].海洋学报,1999,21(1):97-102.Liu G C,Li D S.A study on bacteria attached to suspended particles in shrimp ponds[J].Acta Oceanologica Sinica,1999,21(1):97-102.
    [45]王诗红,张志南.日本刺沙蚕摄食沉积物的实验研究[J].青岛海洋大学学报,1998,28(4):587-592.Wang S H,Zhang Z N.Study of Neanthes japonica feeding on natural sediment[J].Journal of Ocean University of Qindao,1998,28(4):587-592.
    [46]Tsuchiya M,Kurihara Y.The feeding habits and food sources of the deposit-feeding polychaete,Neanthes japonica,(Izuka)[J].Journal of Experimental Marine Biology&Ecology,1979,36(1):79-89.
    [47]Bayle-Sempere J T,Arreguín-Sánchez F,Sanchez-Jerez P,et al.Trophic structure and energy fluxes around a Mediterranean fish farm[J].Ecological Modelling,2013,248(1751):135-147.
    [48]Vassallo P,Fabiano M,Vezzulli L,et al.Assessing the health of coastal marine ecosystems:A holistic approach based on sediment micro and meio-benthic measures[J].Ecological Indicators,2006,6(3):525-542.
    [49]李纯厚,林婉莲.武汉东湖浮游动物对浮游细菌牧食力研究[J].生态学报,1995,15(2):142-147.Li C H,Lin W L.Grazing rate of zooplankton on bacterioplankton in Donghu Wuhan[J].Ecol Sinica,1995,15(2):142-147.
    [50]周波.基于EwE模型的草鱼综合养殖池塘生态系统研究[D].青岛:中国海洋大学,2015.Zhou B.Research on Grass carp(Ctenopharyngodon idella)integrated aquaculture pond ecosystem:Based on EwE model[D].Qingdao:Ocean University of China,2015.
    [51]Bradford-Grieve J M,Probert P K,Nodder S D,et al.Pilot trophic model for subantarctic water over the Southern Plateau,New Zealand:a low biomass,high transfer efficiency system[J].Journal of Experimental Marine Biology&Ecology,2003,289(2):223-262.
    [52]Winberg G G.Rate of metabolism and food requirements of fishes[J].Fish Res Bd Can Trans Ser,1956(2):475.
    [53]李由明,黄翔鹄,王平,等.利用碳稳定同位素技术对凡纳滨对虾食性变化的分析[J].广东农业科学,2013,40(20):125-128.Li Y M,Huang H X,Wang P,et al.Analysis on diet of Litopenaeusvannameiusing tracer technology of carbon stable isotope[J].Guangdong Agricultural Sciences,2013,40(20):125-128.
    [54]Lindeman R L.The trophic-dynamic aspect of ecology[J].Ecology,1942,23:399-418.
    [55]Ulanowicz R E.Ecosystem Trophic Foundations:Lindeman Exonerata[M]//Complex Ecology:The Part-Whole Relation in Ecosystems.Englewood Cliffs:Prentice Hall,1995.
    [56]Morissette L.Complexity,Cost and Quality of Ecosystem Models and Their Impact on Resilience:A Comparative Analysis,with Emphasis on Marine Mammals and the Gulf of St[D].Lawrence.Vancouver:University of British Columbia,2007:260.
    [57]Liu Q G,Chen Y,Li J L,et al.The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem[J].Ecological Modelling,2007,203:279-289.
    [58]Rooney N,McCann K,Gellner G,et al.Structural asymmetry and the stability of diverse food webs[J].Nature,2006,442:265-269.
    [59]Hossain M M,Matsuishi T,Arhonditsis G.Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido,Japan,using Ecopath with Ecosim(EwE)[J].Ecological Modelling,2010,221:1717-1730.
    [60]Lassalle G,Lobry J,Le L F,et al.Ecosystem status and functioning:searching for rules of thumb using an intersite comparison of food-web models of Northeast Atlantic continental shelves[J].ICES Journal of Marine Science,2012,70:135-149.
    [61]Ulanowicz R E.Quantitative methods for ecological network analysis[J].Computational Biology and Chemistry,2004,28:312-339.
    [62]Ulanowicz R E.Growth and Development:Ecosystem Phenomenology[M].New York:Springer Verlag,1986:203.
    [63]Finn J T.Measures of ecosystem structure and function derived from analysis of flows[J].Journal of Theoretical Biology,1976,56:363-380.
    [64]Vasconcellos M,Mackinson S,Sloman K,et al.The stability of trophic mass-balance models of marine ecosystems:a comparative analysis[J].Ecological Modelling,1997,100(1):125-134.
    [65]Chopin T.Aquaculture,Aquaculture,Integrated Multi-Trophic(IMTA),Aquaculture,Integrated Multi-Trophic(IMTA)[M].New York:Sustainable Food Production Springer,2013:184-205.
    [66]叶振国.浅谈底泥对池塘养殖影响[J].水产养殖,2010,31(3):31-32.Ye Z G.Effects of sediment on pond aquaculture[J].Journal of Aquaculture,2010,31(3):31-32.
    [67]Sorokin Y I,Giovanaradi O.Trophic characteristics of the Manila clam(Tapes philippinarum adams and Reeve)[J].Ices Journal of Marine Science,1995,52:853-862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700