混菌发酵联合分段控温工艺提高柑橘皮渣可溶性膳食纤维含量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improving soluble dietary fiber content of citrus peel and pomace by fermentation with mixed strains combined with two-stage temperature control
  • 作者:曹艳 ; 范铭 ; 童创 ; 陆胜民 ; 杨颖 ; 邢建荣 ; 郑美瑜 ; 唐伟敏 ; 刘哲
  • 英文作者:CAO Yan;FAN Ming;TONG Chuang;LU Shengmin;YANG Ying;XING Jianrong;ZHENG Meiyu;TANG Weimin;LIU Zhe;Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Institute of Food Science, Zhejiang Academy of Agricultural Sciences;College of Chemistry and Life Sciences, Zhejiang Normal University;
  • 关键词:柑橘皮渣 ; 膳食纤维 ; 混菌发酵 ; 分段控温
  • 英文关键词:citrus peel and pomace;;dietary fiber;;mixed strains fermentation;;two-stage temperature control
  • 中文刊名:ZJNB
  • 英文刊名:Acta Agriculturae Zhejiangensis
  • 机构:浙江省农业科学院食品科学研究所农业农村部果品采后处理重点实验室浙江省果蔬保鲜与加工技术研究重点实验室;浙江师范大学化学与生命科学学院;
  • 出版日期:2019-03-25
  • 出版单位:浙江农业学报
  • 年:2019
  • 期:v.31;No.196
  • 基金:公益性行业(农业)专项(201303076-05)
  • 语种:中文;
  • 页:ZJNB201903018
  • 页数:6
  • CN:03
  • ISSN:33-1151/S
  • 分类号:135-140
摘要
为提高柑橘皮渣的利用率,以脐橙皮渣为原料,通过混菌发酵联合分段控温工艺生产高品质膳食纤维,即在脐橙皮渣固体发酵培养基中先接种植物乳杆菌,28℃发酵2 d后接种青霉菌,28℃继续发酵5 d后,加入1.5倍体积无菌水,45℃、100 r·min~(-1)放置24 h。发酵产物中可溶性膳食纤维(SDF)和总膳食纤维(TDF)分别达到42.0%和90.8%以上,SDF/TDF达到46.2%,比未发酵柑橘皮渣分别提高3.08倍、50.1%和1.72倍,SDF含量及SDF/TDF比单独青霉菌恒温(28℃)发酵产物中对应指标分别提高33.8%和30.1%。说明混菌发酵联合分段控温工艺可显著提高脐橙皮渣中SDF含量。该工艺对蜜柑和胡柚皮渣发酵生产高品质膳食纤维具有良好的适用性。
        The peel and pomace of Gannan navel orange were fermented to produce dietary fiber by mixed strains combined with two-stage temperature control in order to promote the utilization efficiency of citrus peel and pomace. The fermentation mode of inoculating mixed strains in sequence combined with two-stage temperature control was adopted. Specifically, Lactobacillus plantarum was inoculated firstly in the solid medium based on navel orange peel and pomace, and was cultured at 28 ℃ for 2 days. Then, Penicillium sp. CIs14 was inoculated in the medium containing L. plantarum, and was cultured at 28 ℃ for 5 days. The culture medium after fermentation was mixed with 1.5 times volume of sterile water and was placed in the shaker with 100 r·min~(-1) speed at 45 ℃ for 24 h. The contents of soluble dietary fiber(SDF) and total dietary fiber(TDF) in the citrus peel and pomace after fermentation were more than 42.0% and 90.8% respectively, and SDF/TDF reached 46.2%. The contents of SDF, TDF and SDF/TDF were increased by 3.08 folds, 50.1% and 1.72 folds, respectively, compared with those in the original navel orange peel and pomace. The content of SDF and SDF/TDF were increased by 33.8% and 30.1%, respectively, compared with those in the navel orange peel and pomace fermented by Penicillium sp. CIs14 only at constant temperature(28 ℃). Therefore, the fermentation mode of inoculating mixed strains in sequence combined with two-stage temperature control could improve the content of SDF in navel orange peel and pomace effectively. In addition, this fermentation mode had good universality for other kinds of citrus peel and pomace to produce dietary fiber with high quality.
引文
[1] 何李, 李绍振, 高彦祥, 等. 柑橘属果皮渣制备膳食纤维的研究进展[J]. 食品科学, 2012, 33(7): 310-314.HE L, LI S Z, GAO Y X, et al. Dietary fiber from citrus pomace: a review[J]. Food Science, 2012, 33(7): 310-314. (in Chinese with English abstract)
    [2] 孙海燕. 柑橘类膳食纤维的制备及其性能研究[J]. 食品工业科技, 2016, 37(4): 318-321.SUN H Y. Preparation and performance characterization of citrus dietary fiber[J]. Science and Technology of Food Industry, 2016, 37(4): 318-321. (in Chinese with English abstract)
    [3] HOWLETT J F, BETTERIDGE V A, CHAMP M, et al. The definition of dietary fiber-discussions at the Ninth Vahouny Fiber Symposium: building scientific agreement[J]. Food & Nutrition Research, 2010, 54(1): 5750.
    [4] ANDERSON J W, BAIRD P, DAVIS JR R H, et al. Health benefits of dietary fiber[J]. Nutrition Reviews, 2009, 67(4): 188-205.
    [5] 张丽芳, 张爱珍. 膳食纤维的研究进展[J]. 中国全科医学, 2007, 10(21): 1825-1827.ZHANG L F, ZHANG A Z. Progress in study of dietary fiber[J]. Chinese General Practice, 2007, 10(21): 1825-1827. (in Chinese with English abstract)
    [6] SCHNEEMAN B O. Soluble vs insoluble fiber: different physiological responses[J]. Food Technology, 1987, 41(2): 81-82.
    [7] KAHLON T S, DE J BERRIOS J, SMITH G E, et al. Extrusion conditions modify hypocholesterolemic properties of wheat bran fed to hamsters[J]. Cereal Chemistry, 2006, 83(2): 152-156.
    [8] VONG W C, LIU S Q. Biovalorisation of okara (soybean residue) for food and nutrition[J]. Trends in Food Science and Technology, 2016, 52: 139-147.
    [9] FILIPOVIC N, DJURIC M, GYURA J. The effect of the type and quantity of sugar-beet fibers on bread characteristics[J]. Journal of Food Engineering, 2007, 78(3): 1047-1053.
    [10] JU D, MU T H, SUN H N. Sweet potato and potato residual flours as potential nutritional and healthy food material[J]. Journal of Integrative Agriculture, 2017, 16(11): 2632-2645.
    [11] BAKER R A. Potential dietary benefits of citrus pectin and fiber[J]. Food Technology, 1994, 48(11): 133-139.
    [12] GRIGELMO-MIGUEL N, MARTI'N-BELLOSO O. Comparison of dietary fibre from by-products of processing fruits and greens and from cereals[J]. LWT-Food Science and Technology, 1999, 32(8): 503-508.
    [13] TIMPONE R, AVELLAM D. Production of dietary fiber from the edible component of citrus fruits[J]. Fruit-Processing, 2002, 12 (10): 432-434.
    [14] 薛战锋, 郭玉蓉, 付成程, 等. 挤压蒸煮技术在膳食纤维改性中的应用及研究进展[J]. 农产品加工·学刊, 2012 (7): 105-108.XUE Z F, GUO Y R, FU C C, et al. Improvement of application and research on the extrusion-cooking in the modification of dietary fiber[J]. Academic Periodical of Farm Products Processing, 2012 (7): 105-108. (in Chinese with English abstract)
    [15] YOON K Y, CHA M, SHIN S R, et al. Enzymatic production of a soluble-fibre hydrolyzate from carrot pomace and its sugar composition[J]. Food Chemistry, 2005, 92(1): 151-157.
    [16] 裘纪莹, 陈蕾蕾, 王未名, 等. 发酵法制备高品质膳食纤维的研究进展[J]. 中国食物与营养, 2010 (6): 24-27.QIU J Y, CHEN L L, WANG W M, et al. Advancement of high-quality dietary fiber preparation by fermentation[J]. Food and Nutrition in China, 2010 (6): 24-27. (in Chinese with English abstract)
    [17] 令博, 田云波, 吴洪斌, 等. 微生物发酵法制取葡萄皮渣膳食纤维的工艺优化[J]. 食品科学, 2012, 33(15): 178-182. LING B, TIAN Y B, WU H B, et al. Optimization of microbial fermentation of grape pomace for dietary fiber[J]. Food Science, 2012, 33(15): 178-182. (in Chinese with English abstract)
    [18] 王庆忠. 绿色木霉发酵制取柑橘皮膳食纤维及其理化特性研究[D]. 成都:四川农业大学, 2004.WANG Q Z. The extraction and characters of dietary fiber from citrus peel by Trichoderma viride[D]. Chengdu: Sichuan Agricultural University, 2004. (in Chinese with English abstract)
    [19] 杨雪. 发酵法提高柑橘皮渣可溶性膳食纤维含量及产物性能的研究[D]. 南京: 南京农业大学, 2015.YANG X. Research on improvement of the soluble dietary fiber in citrus dregs prepared by fermentation and properties of the product[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)
    [20] MONGEAU R, BRASSARD R. Enzymatic-gravimetric determination in foods of dietary fiber as sum of insoluble and soluble fiber fractions: summary of collaborative study[J]. Journal of AOAC International, 1992, 76(4): 923-925.
    [21] 陈丽莉. 微生物发酵和动态高压微射流对豆渣膳食纤维的改性研究[D]. 南昌: 南昌大学, 2013.CHEN L L. Study on the dietary fiber from soybean residue modified by microbial fermentation and dynamic high-pressure microfluidization[D]. Nanchang: Nanchang University, 2013. (in Chinese with English abstract)
    [22] SRIVASTAVA N, SRIVASTAVA M, MISHRA P K, et al. Applications of fungal cellulases in biofuel production: advances and limitations[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2379-2386.
    [23] HIMMEL M E, DING S Y, JOHNSON D K, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813): 804-807.
    [24] 黄春凯, 左小明, 王红蕾, 等. 一株产纤维素酶菌株的分离、鉴定及产酶特性[J]. 微生物学通报, 2015, 42(4): 646-653.HUANG C K, ZUO X M, WANG H L, et al. Isolation, identification and characterization of a cellulase-producing strain[J]. Microbiology, 2015, 42(4): 646-653. (in Chinese with English abstract)
    [25] 刘媛媛, 孙君社, 裴海生, 等. 提高木质纤维素酶水解效率的研究进展[J]. 中国酿造, 2011, 30(5): 16-20.LIU Y Y, SUN J S, PEI H S, et al. Research progress on improving the efficiency of enzymatic hydrolysis lignocellulose[J]. China Brewing, 2011, 30(5): 16-20. (in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700