2015年7月末不同淹水条件下闽江河口沼泽土壤中有机碳和氮的分布
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distributions of Soil Organic Carbon and Nitrogen in Marshes of the Minjiang River Estuary in the End of July of 2015 under Different Flooding Conditions
  • 作者:王杰 ; 孙志高 ; 李家兵 ; 何涛 ; 范爱连 ; 高会 ; 王华
  • 英文作者:WANG Jie;SUN Zhigao;LI Jiabing;HE Tao;FAN Ailian;GAO Hui;WANG Hua;Institute of Geography,Fujian Normal University;Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University),Ministry of Education;Fujian Provincial Key Laboratory for Subtropical Resources and Environment,Fujian Normal University;College of Environmental Science and Engineering,Fujian Normal University;
  • 关键词:有机碳 ; ; 土壤 ; 沼泽 ; 淹水条件 ; 闽江河口
  • 英文关键词:organic carbon;;nitrogen;;soil;;marsh;;flooding condition;;Min River estuary
  • 中文刊名:KXSD
  • 英文刊名:Wetland Science
  • 机构:福建师范大学地理研究所;湿润亚热带生态—地理过程教育部重点实验室福建师范大学;福建省亚热带资源与环境重点实验室福建师范大学;福建师范大学环境科学与工程学院;
  • 出版日期:2018-08-15
  • 出版单位:湿地科学
  • 年:2018
  • 期:v.16
  • 基金:福建省公益类科研院所专项项目(2016R1032-1);; 福建省高等学校“新世纪优秀人才计划”项目;; 福建省“闽江学者奖励计划”项目资助
  • 语种:中文;
  • 页:KXSD201804016
  • 页数:9
  • CN:04
  • ISSN:22-1349/P
  • 分类号:111-119
摘要
在闽江河口鳝鱼滩,选择了不同淹水状况的两条采样带(采样带A,远离主潮沟且退潮后无淹水;采样带B,靠近主潮沟且退潮后有淹水),以短叶茳芏(Cyperus malaccensis)沼泽、互花米草(Spartina alterniflora)沼泽和扁穗沙草(Cyperus compressus)沼泽为研究对象,于2015年7月26日(小潮日),在采样带中的6个采样点,采集了0~60 cm深度的土样,测定土样的有机碳、全氮、硝态氮和铵态氮含量,并分析其空间分布特征。结果表明,采样带A中的短叶茳芏沼泽、互花米草沼泽和扁穗莎草沼泽土壤有机碳质量比分别为(26.46±4.18)g/kg、(25.29±1.49)g/kg和(33.58±2.74)g/kg,采样带B中的短叶茳芏沼泽、互花米草沼泽和扁穗莎草沼泽土壤有机碳质量比分别为(16.63±3.43)g/kg、(13.01±1.48)g/kg和(13.56±0.82)g/kg,长期淹水环境使采样带B各群落区的土壤有机碳含量都明显低于采样带A,分别低37.14%、48.57%和59.60%;与采样带A相比,长期淹水环境降低了采样带B中的短叶茳芏沼泽的土壤全氮含量及其垂直变异性,但增加了扁穗莎草沼泽土壤全氮含量及其垂直变异性,互花米草沼泽土壤全氮含量及其分布特征受淹水环境的影响不明显。采样带B各群落区0~10 cm深度土壤铵态氮含量较小,而在其它土壤深度的含量都高于采样带A;与之相反,互花米草沼泽和扁穗莎草沼泽0~10 cm深度土壤硝态氮含量较大,在其它深度的含量都低于采样带A。淹水条件是导致采样带A和B相同植物群落沼泽土壤碳、氮含量空间分布差异的重要因素。
        To explore the spatial distribution of soil organic carbon, total nitrogen, nitrate nitrogen, ammonium nitrogen contents in soils of tidal marshes in the Shanyutan of the Min River estuary, from the land to the sea,two transects(A transect, away from the main tidal channels with no flooding as the tide ebbs; B transect, near the main tidal channels with flooding as the tide ebbs) with different flooding regimes were laid and three typical marshes of Cyperus malaccensis marsh, Spartina alterniflora marsh and Cyperus compressus marsh were selected. The soil samples of 0-60 cm were selected on July 26, 2015(Neap tide). The results showed that the contents of soil organic carbon in soils of Cyperus malaccensis marsh, Spartina alterniflora marsh and Cyperus compressus marsh were respectively(26.46±4.18) g/kg,(25.29±1.49) g/kg and(33.58±2.74) g/kg at A transect, and those of B transect were respectively(16.63±3.43) g/kg,(13.01±1.48) g/kg and(13.56±0.82) g/kg,that was long-term flooding regime caused the contents of soil organic carbon in soils of Cyperus malaccensis marsh, Spartina alterniflora marsh and Cyperus compressus marsh at B transect were much lower than those at A transect, and the values decreased by 37.14%, 48.57% and 59.60%, respectively. Compared with A transect, long-term flooding regime decreased the total nitrogen content and its vertical variability in Cyperus malaccensis marsh soil but increased the total nitrogen content and its vertical variability in Cyperus compressus marsh soil of B transect, while the nitrogen content and its distribution characteristics in Spartina alterniflora marsh soil of B transect were not affected by flooding environment. Except for the surface soil layer(0-10 cm), the ammonium nitrogen content in three marsh soils of B transect was higher than that of A transect while the nitrate nitrogen content showed the oppsite trend in other soil layers except for the topsoil(0-10 cm)in Spartina alterniflora marsh and Cyperus compressus marsh. The study found that flooding regime was an important factor in inducing the differences of carbon and nitrogen distributions in soils of the same marsh located in A and B transects, which greatly affected the distributions of nutrient in soils by influencing the grain composition and the key processes of carbon and nitrogen transformations.
引文
[1]Millennium Ecosystem Assessment.Ecosystems and Human Well-being:Wetland and Water Synthesis[M].Washington DC:World Resources Institute,2005.
    [2]Santín C,González-Pérez M,Otero X L,et al.Characterization of humic substances in salt marsh soils under sea rush(Juncus maritimus)[J].Estuarine,Coastal and Shelf Science,2008,79(3):541-548.
    [3]孙雪利,刘景双,褚衍儒.三江平原小叶樟和毛果苔草中N素营养动态分析[J].应用生态学报,2000,1(6):893-897.
    [4]赵光影,刘景双,张雪萍,等.CO2浓度升高对三江平原湿地土壤碳氮含量的影响[J].水土保持学报,2011,31(2):6-9.
    [5]Yan G,Ge Z M,Zhang L Q.Distribution of soil carbon storage in different saltmarsh plant communities in Chongming Dongtan wetland[J].Chinese Journal of Applied Ecology,2014,25(1):85-91.
    [6]Bai J,Wang J J,Yan D H,et al.Spatial and Temporal Distributions of Soil Organic Carbon and Total Nitrogen in Two Marsh Wetlands with Different Flooding Frequencies of the Yellow River Delta,China[J].Clean-Soil,Air,Water,2012,40(10):1137-1144.
    [7]Hinson A L,Feagin R A,Eriksson M,et al.The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States[J].Global Change Biology,2017,99(1):133-146.
    [8]谢文霞,朱鲲杰,崔育倩,等.胶州湾河口湿地土壤有机碳及氮含量空间分布特征研究[J].草业学报,2014,23(6):54-60.
    [9]Xian G,KONG,Fan L.Distribution characteristics of dissolved organic carbon in annular wetland soil-water solutions through soil profiles in the Sanjiang Plain,Northeast China[J].Actascientiae Circumstantiae,2007,19(9):1074-1078.
    [10]贾佳,白军红,高照琴,等.黄河三角洲潮间带盐沼土壤碳、氮含量和储量[J].湿地科学,2015,13(6):714-721.
    [11]牟晓杰,孙志高,刘兴土.黄河口滨岸潮滩湿地土壤碳、氮的空间分异特征[J].地理科学,2012,32(12):1521-1529.
    [12]肖颖,杨继松.辽河口滨海湿地土壤有机碳矿化及其与盐分的关系[J].生态学杂志,2015,34(10):2792-2798.
    [13]廖小娟,何东进,王韧,等.闽东滨海湿地土壤有机碳含量分布格局[J].湿地科学,2013,1(2):192-197.
    [14]邵学新,杨文英,吴明,等.杭州湾滨海湿地土壤有机碳含量及其分布格局[J].应用生态学报,2011,22(3):658-664.
    [15]张天雨,葛振鸣,张利权,等.崇明东滩湿地植被类型和沉积特征对土壤碳、氮分布的影响[J].环境科学学报,2015,35(3):836-843.
    [16]李家兵,张秋婷,张丽烟,等.闽江河口春季互花米草入侵过程对短叶茳芏沼泽土壤碳氮分布特征的影响[J].生态学报,2016,36(12):3628-3638.
    [17]何涛,孙志高,李家兵,等.闽江河口不同淹水环境下典型湿地植物—土壤系统全硫含量空间分布特征[J].水土保持学报,2016,30(5):246-254.
    [18]曾从盛,王维奇,翟继红.闽江河口不同淹水频率下湿地土壤全硫和有效硫分布特征[J].水土保持报,2010,24(6):246-250.
    [19]仝川,贾瑞霞,王维奇,等.闽江口潮汐盐沼湿地土壤碳氮磷的空间变化[J].地理研究,2010,29(7):1203-1213.
    [20]鲁如坤.土壤农化分析方法[M].北京:中国农业科学技术出版社,2000.
    [21]Chaney K,Swift R S.The influence of organic matter on aggregate stability in some British soils[J].Journal of Soil Science,1984,35:223-230.
    [22]Corre M D,Schnabel R R,Stout W L.Spatial and seasonal variation of gross nitrogen transformations and microbial biomass in a Northeastern US grassland[J].Soil Biology&Biochemistry,2002,34(4):445-457.
    [23]Jobbagy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2002,10(2):423-436.
    [24]Anderson J T,Smith L M.The effect of flooding regimes on decomposition of Polygonum pensylvanicum,in playa wetlands(Southern Great Plains,USA)[J].Aquatic Botany,2002,74(2):97-108.
    [25]王纯,王维奇,曾从盛,等.闽江河口区盐—淡水梯度下湿地土壤氮形态及储量特征[J].水土保持学报,2011,25(5):147-153.
    [26]王青,袁勇,李传哲,等.白洋淀湿地土壤氮素空间分布特征研究[J].环境保护科学,2013,39(4):1-6.
    [27]高俊琴,徐兴良,张锋,等.水分梯度对若尔盖高寒湿地土壤活性有机碳分布的影响[J].水土保持学报,2008,22(3):126-131.
    [28]Wilson D J,Jefferies R L.Nitrogen mineralization,plant growth and goose herbivory in an Arctic coastal ecosystem[J].Journal of Ecology,1996,84(6):841-851.
    [29]孙志高,刘景双.三江平原典型湿地土壤硝态氮和铵态氮垂直运移规律[J].水土保持学报,2007,21(6):25-30.
    [30]牟晓杰,孙志高,王玲玲.沼泽湿地土壤中硝态氮和铵态氮物理运移研究进展[J].海洋湖沼通报,2010,1(1):146-152.
    [31]金相灿,崔哲,王圣瑞.连续淹水培养条件下沉积物和土壤的氮素矿化过程[J].土壤通报,2006,37(5):909-915.
    [32]王少平,俞立中,许世远,等.上海青紫泥土壤氮素淋溶及其对水环境影响研究[J].长江流域资源与环境,2002,11(6):554-558.
    [33]白军红,邓伟,朱颜明,等.霍林河流域湿地土壤碳氮空间分布特征及生态效应[J].应用生态学报,2003,14(9):1494-1498.
    [34]Bai J,Wang J,Yan D,et al.Spatial and Temporal Distributions of Soil Organic Carbon and Total Nitrogen in Two Marsh Wetlands with Different Flooding Frequencies of the Yellow River Delta,China[J].Clean-Soil Air Water,2012,40(10):1137-1144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700