不同直径碳纳米管对水泥基试样力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Carbon Nanotubes with Different Diameters on Mechanical Property of Cement-based Samples
  • 作者:戚瑞 ; 田威 ; 王峰 ; 赵丙伟
  • 英文作者:QI Rui;TIAN Wei;WANG Feng;ZHAO Bing-wei;School of Civil Engineering,Chang'an University;Bureau of Linqu Water Resources;
  • 关键词:碳纳米管 ; 抗压强度 ; 抗折强度 ; 孔隙率 ; 扫描电镜
  • 英文关键词:carbon nanotubes;;compressive strength;;flexural strength;;porosity;;SEM
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:长安大学建筑工程学院;临朐县水利局;
  • 出版日期:2019-03-15
  • 出版单位:硅酸盐通报
  • 年:2019
  • 期:v.38;No.270
  • 基金:国家自然科学基金(51579013)
  • 语种:中文;
  • 页:GSYT201903011
  • 页数:6
  • CN:03
  • ISSN:11-5440/TQ
  • 分类号:70-75
摘要
为了研究不同掺量以及不同直径多壁碳纳米管(MWCNTs)对水泥基试样力学性能的影响,分别采用直径为10~20 nm、20~40 nm、40~60 nm的三种MWCNTs制备了不同掺量的MWCNTs水泥基试样,并对水泥基试样进行了力学性能试验。通过孔径分析仪(MIP)和扫描电子显微镜(SEM)分别对不同直径及不同掺量的MWCNTs水泥基试样的孔隙结构和微观结构进行了研究。试验结果表明:使用相同直径MWCNTs的水泥基试样中,抗压强度和抗折强度分别在较低掺量为0. 1wt%和0. 2wt%时提升最为明显,孔隙率随着MWCNTs掺量的增加而增大;而使用相同MWCNTs掺量的水泥基试样中,MWCNTs直径为10~20 nm的抗压强度提升最为明显,直径为40~60 nm的抗折强度提升最为明显,孔隙率随着MWCNTs直径的增大而增大。另外通过扫描电镜分析还发现,不同直径不同掺量的MWCNTs在水泥基试样中起到了桥联和拔出作用,能有效的阻止裂缝的传播和发展。
        Multi-walled carbon nanotubes (MWCNTs),with diameters of 10-20 nm,20-40 nm and 40-60 nm,were used to make three sorts of carbon nanotubes cement-based samples. Effects of inclusion and diameter of MWCNTs on the mechanical property of the cement-based samples were systematically studied by preparing specimens containing different fraction and different diameter of MWCNTs,respectively.The automated mercury intrusion porosimeter and scanning electronic microscopy (SEM) were used to research the pore structure and microstructure of the carbon nanotubes cement-based samples. The results show that the compressive strength and flexural strength are improved most obviously when the fraction of the same diameter MWCNTs is 0. 1 wt% and 0. 2 wt% and when the MWCNTs ' diameter with the same additive amount is 10-20 nm and 40-60 nm,respectively. The porosity of the sample is increasing with the fraction and diameter of MWCNTs. SEM shows that MWCNTs can effectively prevent the propagation and development of cracks in that the effect of their bridging and pull-out in cement-based samples.
引文
[1]García-Macías E,D'alessandro A,Castro-Triguero R,et al.Micromechanics modeling of the electrical conductivity of carbon nanotube cementmatrix composites[J].Composites Part B Engineering,2017,108:451-469.
    [2]Naeem F,Lee H K,Kim H K,et al.Flexural stress and crack sensing capabilities of MWNT/cement composites[J].Composite Structures,2017,175:86-100.
    [3]Musso S,Tulliani J M,Ferro G,et al.Influence of carbon nanotubes structure on the mechanical behavior of cement composites[J].Composites Science&Technology,2009,69(11-12):1985-1990.
    [4]Wang J L,Zhao Y L,He X B,et al.Influence of carbon nanotubes on the properties of concrete[J].Bulletin of the Chinese Ceramic Society,2016,35(7):2193-2197.
    [5]Konsta-Gdoutos M S,Metaxa Z S,Shah S P.Highly dispersed carbon nanotube reinforced cement based materials[J].Cement&Concrete Research,2016,40(7):1052-1059.
    [6]崔宏志,杨嘉明,林炅增.碳纳米管分散技术及碳纳米管-水泥基复合材料研究进展[J].材料导报,2016,30(3):91-95.
    [7]Chaipanich A,Rianyoi R,Nochaiya T,et al.The effect of carbon nanotubes and silica fume on compressive strength and flexural strength of cement mortars[J].Materials Today Proceedings,2017,4(5):6065-6071.
    [8]Wang B,Han Y,Liu S.Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites[J].Construction&Building Materials,2013,46(46):8-12.
    [9]Carrio A,Bogas J A,Hawreen A,et al.Durability of multi-walled carbon nanotube reinforced concrete[J].Construction&Building Materials,2018,164:121-133.
    [10]刘巧玲,孙伟,孙波,等.碳纳米管水性分散体的制备及其对水泥砂浆强度的影响[J].东南大学学报(自然科学版),2014,44(3):662-667.
    [11]Malpot A,Touchard F,Bergamo S.An investigation of the influence of moisture on fatigue damage mechanisms in a woven glass-fibre-reinforced PA66 composite using acoustic emission and infrared thermography[J].Composites Part B Engineering,2017,130:11-20.
    [12]Li G Y,Wang P M,Zhao X.Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J].Carbon,2005,43(6):1239-1245.
    [13]Fakhim B,Hassani A,Rashidi A,et al.Preparation and microstructural properties study on cement composites reinforced with multi-walled carbon nanotubes[J].Journal of Composite Materials,2015,49(1):85-98.
    [14]Mohsen M O,Taha R,Taqa A A,et al.Optimum carbon nanotubes’content for improving flexural and compressive strength of cement paste[J].Construction&Building Materials,2017,150:395-403.
    [15]Wang B,Yu H,Pan B,et al.Mechanical and morphological properties of highly dispersed carbon nanotubes reinforced cement based materials[J].Journal of Wuhan University of Technology-Mater.Sci.Ed.,2013,28(1):82-87.
    [16]Xu S,Liu J,Li Q.Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste[J].Construction&Building Materials,2015,76:16-23.
    [17]Liu Q,Sun W,Jiang H,et al.Effects of carbon nanotubes on mechanical and 2D-3D microstructure properties of cement mortar[J].Journal of Wuhan University of Technology-Mater.Sci.Ed.,2014,29(3):513-517.
    [18]Sobolkina A,Mechtcherine V,Khavrus V,et al.Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix[J].Cement&Concrete Composites,2012,34(10):1104-1113.
    [19]庞超明,Leung C K Y,孙伟,等.水泥基材料断裂性能与微孔结构研究[J].建筑材料学报,2011,14(4):523-527.
    [20]Al-Rub R K A,Ashour A I,Tyson B M.On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites[J].Construction&Building Materials,2012,35(10):647-655.
    [21]Manzur T,Yazdani N,Emon M A B.Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites[J].Journal of Materials,2014,2014(1):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700