串联渠系PID改进积分与微分环节仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation for PID Controller of Modified Integral and Differential on Tandem Canal System
  • 作者:黄凯 ; 管光华 ; 刘大志 ; 莫振宁
  • 英文作者:HUANG Kai;GUAN Guanghua;LIU Dazhi;MO Zhenning;State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University;Guizhou Survey and Design Research Institute for Water Resources and Hydropower;
  • 关键词:PID算法 ; 非恒定流 ; 自动控制 ; 渠系运行
  • 英文关键词:PID algorithm;;unsteady flow;;automatic control;;canal operation
  • 中文刊名:GGPS
  • 英文刊名:Journal of Irrigation and Drainage
  • 机构:武汉大学水资源与水电工程科学国家重点实验室;贵州省水利水电勘测设计研究院;
  • 出版日期:2017-02-15
  • 出版单位:灌溉排水学报
  • 年:2017
  • 期:v.36
  • 基金:国家自然科学基金重点项目(51439006)
  • 语种:中文;
  • 页:GGPS201702001
  • 页数:11
  • CN:02
  • ISSN:41-1337/S
  • 分类号:3-13
摘要
渠道系统自动化运行是提高明渠输水系统水资源利用效率的有效途径,其基本思路是通过节制闸的实时调节维持渠道内的水位、流量在一定的目标状态。经典PID控制算法在应用到渠道控制中存在微分环节极易引起超调甚至系统失稳的问题,因而实际渠系控制器多采用比例积分环节(PI),其缺点是响应缓慢。为了提高渠系控制的响应速度、减小系统调节动作量,在PID算法的积分环节中引入启动阈值,并采用惯性环节串联补偿微分环节。采用ASCE的标准渠道测试算例进行建模仿真,计算结果表明改进算法在传统PID算法的基础上降低系统超调、减少闸门的调节量;在PI算法的基础上提高系统响应速度。
        Automatic operation is an effective way to improve the utilization efficiency of water resource on canal system. The basic idea is to maintain channels of water level and flow rate in a certain target state through real-time adjustment of the gate. Differential link of classic PID control algorithm easily leads to excessive overshoot and even system instability, therefore PI controller without differential stage is commonly used in canal system. In order to improve the system response speed and reduce regulating action, starting threshold in the stage of the integral, with inertial factor for differential stage to improve the classic PID algorithm was introduced. Simulation was carried out for standard test cases from ASCE. Results showed that the modified algorithm could reduce the over shoot and decrease the adjustment of gate compared with traditional PID algorithm,and improve the system's response speed in contrast to PI algorithm.
引文
[1]崔巍,陈文学,穆祥鹏,等.明渠运行控制算法研究综述[J].南水北调与水利科技,2009,7(6):113-122.
    [2]VAN-OVERLOOP P J,SCHUURMANS J,BROUWER R,et al.Multiple-model optimization of proportional integral controllers on canals[J].Journal of Irrigation and Drainage Engineering,2005,131(2):190-196.
    [3]MALATERRE P-O.Linear quadratic optimal controller for irrigation canals[J].Journal of Irrigation and Drainage Engineering,1998,124(4):187-194.
    [4]CLEMMENS A J.Water-level difference controller for main canals[J].Journal of Irrigation and Drainage Engineering,2011,138(1):1-8.
    [5]GUAN G H,CLEMMENS A J,KACEREK T F,et al.Applying water-level difference control to central Arizona project[J].Journal of Irrgation and Drainage Engineering,2011,137(12):747-753.
    [6]尚毅梓,吴保生,李铁键,等.渠道分水扰动可预知算法设计与仿真[J].水科学进展,2011,22(2):242-248.
    [7]LITRICO X.Robust flow control of single input multiple outputs regulated rivers[J].Journal of Irrigation and Drainage Engineering,2001,127(5):281-286.
    [8]管光华,王长德,范杰,等.鲁棒控制在多渠段自动控制的应用[J].水利学报,2005,36(11):1 379-1 384.
    [9]周美林,吕宏兴,韩文霆,等.渠系配水优化模型和多目标遗传算法研究[J].中国农村水利水电,2014(9):5-7.
    [10]韩延成,高学平.基于RBF人工神经网络的下游常水位自适应渠道输水控制研究[J].西北农林科技大学学报,2007,35(8):202-206.
    [11]美国内务部垦务局.现代灌区自动化管理实用手册[M].庞进武,高占义译.北京:中国水利电力出版社,2003:35-40.
    [12]WILLIAM W-G Y,ALBERT L G,DOUGLAS T.Central Arizona Project:Operation Model[J].Journal of the Water Resources Planning and Management Division,1980,106(2):521-540.
    [13]CLEMMENS A J,STRELKOFF T S,REPLOGL J A.Calibration of Submerged Radial Gates[J].Journal of Hydraulic Engineering,2003,129(9):680-687.
    [14]徐正凡.水力学[M].下册.北京:高等教育出版社,1986:320-334.
    [15]陶永华,尹怡欣.新型PID控制及其应用[M].北京:机械工业出版社,1998:1-17.
    [16]CLEMMENS A.J.,KACEREK T.F.Test Cases for Canal Control Algorithms[J].Journal of Irrigation and Drainage Engineering,1998,12(1):23-30.
    [17]武汉大学.输水渠道系统运行仿真与控制软件V1.0[P].中国:2011SR034392,2011-06-03.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700