利用铝电解槽废旧阴极碳热还原铬铁矿(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbothermic reduction of chromite fluxed with aluminum spent potlining
  • 作者:于大伟 ; Dogan ; PAKTUNC
  • 英文作者:Dawei YU;Dogan PAKTUNC;CanmetMINING;School of Metallurgy and Environment, Central South University;
  • 关键词:铬铁矿 ; 碳热还原 ; 铬铁合金 ; 铝电解槽废旧阴极
  • 英文关键词:chromite;;carbothermic reduction;;ferrochrome;;aluminum spent potlining
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:CanmetMINING;中南大学冶金与环境学院;
  • 出版日期:2019-01-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:funded by NRCan under the Rare Earth Elements and Chromite R&D Program
  • 语种:英文;
  • 页:ZYSY201901021
  • 页数:13
  • CN:01
  • ISSN:43-1239/TG
  • 分类号:206-218
摘要
铝电解槽废旧阴极(SPL)是铝电解生产过程中产生的废料,被用作造渣熔剂与碳源来碳热还原铬铁矿。本研究的主要目标是促进碳热还原过程中铬铁合金颗粒的生长,以利于后续过程中合金与渣相的分离。实验证明相对于采用石墨作为还原剂,SPL中的碳组分能够更有效地还原铬铁矿。铬铁矿还原过程中矿物颗粒表面形成惰性的尖晶石层(MgAl_2O_4),从而阻碍反应的进行以及铬铁合金的生长。SPL中的造渣组分(例如霞石及NaF)在较低温度下(约1300℃)形成熔渣,并部分熔解尖晶石以及铬铁矿相。通过破坏铬铁矿颗粒表面的惰性尖晶石层、促进传质过程以及提高还原温度(例如1500℃)实现铬铁合金颗粒的生长。在还原温度为1500℃以及采用SPL作为添加剂条件下,还原得到较为粗大的铬铁合金颗粒,采用淘析法能够实现合金与渣相的有效分离。
        Aluminum spent potlining(SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag component. The experimental results show that the carbonaceous component of the SPL is more reactive towards chromite reduction compared to graphite. The formation of refractory spinel(MgAl_2O_4) on chromite particles hinders further reduction and alloy growth. The slag-making components of the SPL(e.g. nepheline and NaF) form molten slags at low temperatures(~1300 ℃) and partly dissolve the refractory spinel as well as the chromite. Destruction of the spinel layer with enhanced mass transfer greatly improves the alloy growth, which can be further promoted by reduction at a higher temperature(e.g. 1500 ℃). Ferrochrome alloy particles grow large enough at 1500 ℃ in the presence of SPL, allowing effective separation from the slag component using elutriation separation.
引文
[1]BASSON J,DAAVITTILA J.Handbook of ferroalloys:Theory and technology[M].New York:Butterworth-Heinemann Elsevier,2013.
    [2]JOHNSON J,RECK B K,WANG T,GRAEDEL T E.The energy benefit of stainless steel recycling[J].Energy Policy,2008,36:181-192.
    [3]KLEYNHANS E L J,BEUKES J P,VAN ZYL P G,BUNT R J,NKOSI N S B,VENTER M.The effect of carbonaceous reductant selection on chromite pre-reduction[J].Metallurgical and Materials Transactions B,2017,48:827-840.
    [4]CHAKRABORTY D,RANGANATHAN S,SINHA S N.Investigations on the carbothermic reduction of chromite ores[J].Metallurgical and Materials Transactions B,2005,36B:437-444.
    [5]NAFZIGER R H,TRESS J E,PAIGE J I.Carbothermic reduction of domestic chromites[J].Metallurgical Transactions B,1979,10B:5-14.
    [6]WANG Y,WANG L,XU J,CHOU K C.Kinetics of carbothermic reduction of synthetic chromite[J].Journal of Mining and Metallurgy,Section B:Metallurgy,2014,50:15-21.
    [7]WEBER P,ERIC R H.The reduction mechanism of chromite in the presence of a silica flux[J].Metallurgical Transactions B,1992,24:987-995.
    [8]YU D,PAKTUNC D.Kinetics and mechanisms of the carbothermic reduction of chromite in the presence of nickel[J].Journal of Thermal Analysis and Calorimetry,2018,132:143-154.
    [9]HAYES P C.Aspects of SAF smelting of ferrochrome[C]//Tenth International Ferroalloys Congress.Cape Town,South Africa:South African Institute of Mining and Metallurgy,2004:1-14.
    [10]NEUSCHUTZ D,JANBEN P,FRIEDRICH G,WIECHOWSKI A.Effect of flux additions on the kinetics of chromite ore reduction with carbon[C]//INFACON 7.Trondheim,Norway:FFF,1995:371-382.
    [11]WEBER P,ERIC R H.The reduction of chromite in the presence of silica flux[J].Minerals Engineering,2006,19:318-324.
    [12]LEKATOU A,WALKER R D.Effect of SiO2 addition on solid state reduction of chromite concentrate[J].Ironmaking&Steelmaking,1997,24:133-143.
    [13]DUONG H V,JOHNSTON R F.Kinetics of solid state silica fluxed reduction of chromite with coal[J].Ironmaking&Steelmaking,2000,27:202-206.
    [14]URQUHART R C,JOCHENS P R,HOWAT D D.A laboratory investigation of the smelting mechanisms associated with the production of high-carbon ferrochromium[C]//Proceedings INFACON 1974.South Africa,Johannesburg,1974:231-245.
    [15]WEBER P,ERIC R H.Solid-state fluxed reduction of LG-6 chromite from the Bushveld complex[C]//INFACON 6.Proceeding of the 6th International Ferroalloys Congress.South Africa,Cape Town,1992:71-77.
    [16]DING Y L,WARNER N A.Catalytic reduction of carbon-chromite composite pellets by lime[J].Thermochimica Acta,1997,292:85-94.
    [17]NEIZEL B W,BEUKES J P,VAN ZYL P G,DAWSON N F.Why is Ca CO3 not used as an additive in the pelletised chromite pre-reduction process?[J].Minerals Engineering,2013,45:115-120.
    [18]KATAYAMA H G,TOKUDA M,OHTANI M.Promotion of the carbothermic reduction of chromite ore by the addition of borates[J].The Iron and Steel Institute of Japan,1986,72:1513-1520.
    [19]SOKHANVARAN S,PAKTUNC D.The effect of fluxing agent on direct reduction of chromite ore[C]//Conference of Metallurgists.Vancouver.Canada:Metallurgy and Materials Society,2017:9696.
    [20]YU D,PAKTUNC D.Direct production of ferrochrome by segregation reduction of chromite in the presence of calcium chloride[J].Metals,2018,8:69.
    [21]YU D,PAKTUNC D.Calcium chloride-assisted segregation reduction of chromite:Influence of reductant type and the mechanism[J].Minerals,2018,8:45.
    [22]HOLYWELL G,BREAULT R.An overview of useful methods to treat,recover,or recycle spent potlining[J].JOM,2013,65:1441-1451.
    [23]PAWLEK R P.Spent potlining:Water soluble components,landfill and alternative solutions[C]//Light Metals 1993.Pittsburgh,PA:The Minerals,Metals&Materials Society,1993:399-405.
    [24]PAWLEK R P.Spent potlining:An update[C]//Light Metals 2012.Springer,Cham,2012:1313-1317.
    [25]PONG T K,ADRIEN R J,BESIDA J,O’DONNELL T A,WOOD DG.Spent potlining-A hazardous waste made safe[J].Process Safety and Environmental Protection,2000,78:204-208.
    [26]NIKITIN L D,et al.Use of aluminium production wastes in the charge of blash furnace at the west Siberian metallurgical plant[J].Ferrous Metallurgy,Bulletin of Scientific,Technical and Economic Information,2001,11:33-36.(in Russian)
    [27]von KRüGER Paulo.Use of spent potlining(SPL)in ferro silico manganese smelting[C]//Light Metals 2011.Hobokem,NJ,USA:John Wiley&Sons,Inc.,2011:275-280.
    [28]YU D,CHATTOPADHYAY K.Numerical simulation of copper recovery from converter slags by the utilisation of spent potlining(SPL)from aluminium electrolytic cells[J].Canadian Metallurgical Quarterly,2016,55:251-260.
    [29]YU D,CHATTOPADHYAY K.Fluxing molten converter slags with spent potlining(SPL)for metal recovery[C]//COM 2015.Toronto,Canada:Canadian Institute of Mining,Metallurgy and Petroleum,2015:1-11.
    [30]AUGOOD D R,SCHLAGER R J.Potlining flux in making steel[C]//Light Metals 1983.Pittsburgh,PA:The Minerals,Metals&Materials Society,1983:1037-1043.
    [31]GAO L,MOSTAGHEL S,RAY S,CHATTOPADHYAY K.Use of SPL(spent pot-lining)as as alternative fuel in metallurgical furnaces[J].Metallurgical and Materials Transactions E,2016,3:179-188.
    [32]GOMES V,DRUMOND P Z,NETO J O P,LIRA A R.Co-processing at cement plant of spent potlining from aluminium industry[C]//Essential Readings in Light Metals.Springer,Cham,2005:507-513.
    [33]FROST I C.An elutriating tube for the specific gravity separation of minerals[J].The American Mineralogist,1959,44:886-890.
    [34]SCHNEIDER A C,RASBAND W S,ELICEIRI K W.NIH Image to ImageJ:25 years of image analysis[J].Nature Methods,2012,9:671-675.
    [35]BALE C W,BELISLE E,CHARTRAND P,DECTEROV S A,ERIKSSON G,GHERIBI A E,HACK K,JUNG I H,KANG Y B,MELANCON J,PELTON A D,PETERSEN S,BOBELIN C,SANGSTER J,van ENDE M-A.FactSage thermochemical software and databases,2010-2016[J].Calphad,2016,54:35-53.
    [36]ROSCOE R.The viscosity of suspensions of rigid spheres[J].British Journal of Applied Physics,1952,3:267-269.
    [37]SATO Hiroaki.Viscosity measurement of subliquidus magmas:1707basalt of Fuji volcano[J].Journal of Mineralogical and Petrological Sciences,2005,100:133-142.
    [38]MARSH B D.On the crystallinity,probability of occurrence,and rhyology of lava and magma[J].Contributions to Mineralogy and Petrology,1981,78:85-98.
    [39]LIU S,ZHOU Y,XING X,WANG J,REN X,YANG Q.Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-Calloy[J].Scientific Reports,2016,6:32941.
    [40]LE?KO A,NAVARA E.Microstructural characterization of high-carbon ferrochrome[J].Materials Characterization,1996,36:349-356.
    [41]HU X,TENG L,WANG H,?KVIST L S,YANG Q,BJ?RKMAN B,SEETHARAMAN S.Carbothermic reduction of synthetic chromite with/without the addition of iron powder[J].ISIJ International,2016,56:2147-2155.
    [42]van STADEN Y,BEUKES J P,VAN ZYL P G,RINGDALEN E,TANGSTAD M,KLEYNHANS E L J,BUNT J R.Dam-ring formation in chromite pre-reduction rotary kilns-Influence of pulverised carbonaceous fuel and ore composition[C]//Infacon XV:International Ferro-Alloys Congress.Cape Town,South Africa:Southern African Institute of Mining and Metallurgy,2018:25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700