FeO-SiO_2-CaO-ZnO-5%Al_2O_3渣系熔化温度的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Melting Temperature of FeO-SiO_2-CaO-ZnO-5%Al_2O_3 Slag System
  • 作者:张忠堂 ; 戴曦
  • 英文作者:Zhang Zhongtang;Dai Xi;School of Metallurgical and Environment,Central South University;
  • 关键词:相图 ; 热力学 ; 熔化温度 ; 液相区 ; 脆硫铅锑精矿
  • 英文关键词:phase diagram;;thermodynamics;;melting temperature;;liquid phase region;;jamesonite concentrate
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:中南大学冶金与环境学院;
  • 出版日期:2018-03-19 17:18
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.275
  • 基金:国家自然科学基金项目(51474248)资助
  • 语种:中文;
  • 页:ZXJS201902009
  • 页数:9
  • CN:02
  • ISSN:11-2111/TF
  • 分类号:61-69
摘要
脆硫铅锑精矿富氧直接熔炼过程炉渣的熔化温度对熔炼过程的顺行高产具有重要影响。以FeO-SiO_2-CaO-ZnO-5%Al_2O_3渣系为研究对象,采用热力学软件FactSage计算并绘制了该渣系相图,探讨了温度、 Fe/SiO_2(质量比)、 CaO/SiO_2(质量比)及ZnO含量对炉渣熔化温度的作用规律。研究结果表明:升高温度可以显著增大炉渣的液相区,炉渣的熔化温度随Fe/SiO_2和CaO/SiO_2的增大而升高,且Fe/SiO_2对炉渣熔化温度的影响较CaO/SiO_2大。在Fe/SiO_2 1.1, CaO/SiO_2 0.6条件下,炉渣中ZnO含量在8%~16%范围内变化对炉渣的熔化温度影响较小,炉渣液相区随ZnO含量的升高而逐渐减小,在保证熔渣流动性较好的前提下,炉渣中ZnO的含量可控制在10%~12%。根据热力学分析结果,开展了验证试验,结果表明:在熔炼温度1250℃, CaO/SiO_2 0.6, Fe/SiO_2 1.1条件下,熔炼过程熔渣具有较好的流动性,合金直收率达到45.56%,渣中金属含量(Pb+Sb)为1.75%,渣中ZnO含量为11.91%。
        The melting temperature of slag had a major impact on the anterograde high yield of oxygen-enriched direct smelting of jamesonite concentrate. The phase diagrams of FeO-SiO_2-CaO-ZnO-5%Al_2O_3 slag system were drawn and calculated by using FactSage thermodynamics software. The effect of temperature, Fe/SiO_2(mass fraction), CaO/SiO_2(mass fraction) and ZnO content on the melting temperature of slag in oxygen-enriched direct smelting of jamesonite concentrate was investigated. The results indicated that the liquid phase region of slag increased significantly with the increase of temperature. The melting temperature of slag increased with increasing Fe/SiO_2 and CaO/SiO_2 ratios, and the effect of Fe/SiO_2 on melting temperature of slag was larger than that of CaO/SiO_2. The content of ZnO had little effect on the melting temperature of slag with the change of ZnO content in the range of 8%~16% in slag under the condition of Fe/SiO_2 1.1 and CaO/SiO_2 0.6. The liquid phase region of slag will decreased with the increase of ZnO content, and the content of ZnO in slag could be controlled in the range of 10%~12% on the premise that the slag fluidity was better. According to the thermodynamics analysis results, the verification test was carried out under the condition of 1250 ℃ for the smelting temperature, CaO/SiO_2 0.6 and Fe/SiO_2 1.1, indicating that the metal recovery rate was 45.56%, metal content(Pb+Sb) in slag was 1.75% and ZnO content in slag was 11.91%.
引文
[1] Li W F, Zhan J, Fan Y Q. Research and industrial application of a process for direct reduction of molten high-lead smelting slag [J]. JOM, 2017, 69(4): 784.
    [2] Liu W, Luo H, Qing W. Investigation into oxygen-enriched bottom-blown stibnite and direct reduction [J]. Metallurgical & Materials Transactions B, 2014, 45(4): 1281.
    [3] Guo X Y, Wang Q M, Liao L L. Mechanism and multiphase interface behavior of copper sulfide concentrate smelting in oxygen-enriched bottom blowing furnace [J]. Nonferrous Metals Science and Engineering, 2014, (5): 28.(郭学益, 王亲猛, 廖立乐. 铜富氧底吹熔池熔炼过程机理及多相界面行为 [J]. 有色金属科学与工程, 2014, (5): 28.)
    [4] Schlesinger M E, King M J, Sole K C. Byproduct and waste streams-extractive metallurgy of copper (Fifth Edition)-Chapter 21 [A]. Extractive Metallurgy of Copper [M]. 2011. 415.
    [5] Wang Q M, Guo X Y, Tian Q H. Copper smelting mechanism in oxygen bottom-blown furnace [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4): 946.
    [6] Nermes E O, Talonen T T. Flash smelting of lead concentrates[J]. JOM, 1982, 34(11): 55.
    [7] Gan X P. Study of Reasonable Slag from of Jinchuan′s Nickel Flash Smelting Process [D]. Changsha: Central South University, 2002. 3.(甘雪萍. 金川镍闪速熔炼炉渣合理渣型的研究 [D]. 长沙: 中南大学, 2002. 3.)
    [8] Li Y H. Experimental study on the effect of BF slag components on its flow ability [J]. Journal of Anhui University of Technology, 2005, 22(4): 528. (李玉华. 高炉渣成分对其流动性影响的试验研究[J]. 安徽工业大学学报, 2005, 22(4): 528.)
    [9] Zhang Y P, Zhang J L, Mao R. Thermodynamic analysis on fusion temperature and melting characteristics of BF slag [J]. Journal of Iron and Steel Research, 2014, 26(11): 11. (张亚鹏, 张建良, 毛瑞. 高炉炉渣熔化温度及液相生成热力学分析 [J]. 钢铁研究学报, 2014, 26(11): 11.)
    [10] Tian X G, Zhang Y L, Li S Y, Huang Z P, Wang R. Temperature distribution with different solid shapes in heat transfer process [J]. Chinese Journal of Rare Metals, 2017, 41(4): 377.(田晓根, 张亚莉, 李少英, 黄志鹏, 王茹. 传热过程中固体形状对温度分布的影响分析 [J]. 稀有金属, 2017, 41(4): 377.)
    [11] Cui Y R, Li K M, He J S. Melting point of molten high-lead slag in direct reduction process [J]. Chinese Journal of Rare Metals, 2013, 37(3): 473. (崔雅茹, 李凯茂, 何江山. 液态高铅渣还原过程炉渣熔化温度的研究 [J]. 稀有金属, 2013, 37(3): 473.)
    [12] Gao Y M, Wang S B, Yang Y B. Influence of FeO content on the melting temperature of SiO2-CaO-Al2O3-MgO(-FeO) acid slag [J]. Journal of Wuhan University of Science and Technology, 2013, 36(3): 161.(高运明, 王少博, 杨映斌. FeO含量对SiO2-CaO-Al2O3-MgO(-FeO)酸性渣熔化温度的影响 [J]. 武汉科技大学学报, 2013, 36(3): 161.)
    [13] Chuang H C, Hwang W S, Liu S H. Effects of basicity and FeO content on the softening and melting temperatures of the CaO-SiO2-MgO-Al2O3 slag system [J]. Materials Transactions, 2009, 50(6): 1448.
    [14] Su C, Yu J K, Lü N N. Research on the thermodynamic properties of CaO-SiO2-FeOx and CaO-SiO2-P2O5-FeOx slag [J]. Shandong Metallurgy, 2012, (5): 36.(苏畅, 于景坤, 吕宁宁. CaO-SiO2-FeOx及CaO-SiO2-P2O5-FeOx渣系热力学性质的研究 [J]. 山东冶金, 2012, (5): 36.)
    [15] Bale C W, Chartrand P, Degterov S A. FactSage thermochemical software and databases [J]. Calphad, 2009, 33(2): 295.
    [16] Bale C W, Bélisle E, Chartrand P. FactSage thermochemical software and databases [J]. Calphad, 2016, 54(2): 35.
    [17] Krenev V, Dergacheva N, Fomichev S. Antimony: resources, application fields, and world market [J]. Theoretical Foundations of Chemical Engineering, 2015, 49(5): 769.
    [18] Anderson C G. The metallurgy of antimony [J]. Chemie der Erde-Geochemistry-Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology, 2012, 72(72): 3.
    [19] He Q X. Status and development of jamesonite concentrate metallurgy technology in China [J]. Sichuan Nonferrous Metals, 2012, (2): 9.(何启贤. 国内脆硫锑铅矿冶炼技术研究进展 [J]. 四川有色金属, 2012, (2): 9.)
    [20] Zhang Z T, Dai X, Zhang W H. Thermodynamic analysis of oxygen-enriched direct smelting of jamesonite concentrate [J]. JOM, 2017, 69(12): 2671.
    [21] Dai X, Cai Y, Liao C T. A new process for oxygen-enriched direct smelting of jamesonite concentrate [A]. Proceedings of Forum of the China “12th Five-Year” Lead and Zinc Metallurgical Technology Development and Symposium of the Sixty Anniversary of Chihong Company [C]. Qujing, 2010. 18. (戴曦, 蔡勇, 廖春图. 脆硫铅锑精矿富氧直接熔炼新工艺研究 [A]. 全国“十二五”铅锌冶金技术发展论坛暨驰宏公司六十周年大庆学术交流会 [C]. 曲靖, 2010. 18.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700