光强对缘管浒苔(Ulva linza)光合生理特性和短期温度效应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EFFECTS OF LIGHT INTENSITY ON PHOTOSYNTHETIC PHYSIOLOGY CHARACTERISTIC AND SHORT-TIME TEMPERATURE REACTION OF ULVA LINZA
  • 作者:付倩倩 ; 李航霄 ; 吴海龙 ; 徐军田
  • 英文作者:FU Qian-Qian;LI Hang-Xiao;WU Hai-Long;XU Jun-Tian;Jiangsu Key Laboratory of Marine Bioresources and Environment,Jiangsu Key Laboratory of Marine Biotechnology,Huaihai Institute of Technology;
  • 关键词:无机碳利用机制 ; 光强 ; 光合作用 ; 短期温度效应 ; 缘管浒苔
  • 英文关键词:Inorganic carbon utilization;;light intensity;;photosynthesis;;short-term temperature effect;;Ulva linza
  • 中文刊名:HYFZ
  • 英文刊名:Oceanologia et Limnologia Sinica
  • 机构:淮海工学院江苏省海洋生物资源与环境重点实验室江苏省海洋生物技术重点实验室;
  • 出版日期:2018-09-15
  • 出版单位:海洋与湖沼
  • 年:2018
  • 期:v.49
  • 基金:青岛海洋科学与技术国家实验室课题,2016ASKJ02号;; 国家自然科学基金项目,41476097号;; 江苏省自然科学基金项目,BK20161295号;; 江苏省“333工程”科研项目;; 江苏省高校“青蓝工程”资助项目;; 江苏省优势学科建设工程资助项目
  • 语种:中文;
  • 页:HYFZ201805005
  • 页数:8
  • CN:05
  • ISSN:37-1149/P
  • 分类号:31-38
摘要
由于季节和分布深度的不同,海藻接受的光强和温度也不同,其生理响应机制也不同。本文旨在研究不同光强对缘管浒苔(Ulvalinza)光合生理特性及短期温度效应的影响。缘管浒苔样品采自连云港高公岛海区(119.3°E, 34.5°N)。实验设置了低、中、高三个不同水平的光强,分别为90、200和400μE/(m~2·s)。结果表明,藻体的净光合作用速率在低光下显著低于培养在高、中光下的,而光强对呼吸作用速率无显著影响。高光下藻体光系统Ⅱ的最大光化学效率(F_v/F_m)值显著低于中、低光强下,而非光化学淬灭(NPQ)值随光强降低显著下降。叶绿素a和叶绿素b的含量在低光强下均显著高于高、中光强下的含量。最大相对电子传递速率(rETR_(max))随光强变化显著,中光下最高,低光下最低;饱和光强(I_k)在低光下显著低于在高、中光下。在不同浓度的溶解性无机碳(DIC)下,净光合作用速率在不受碳限制时所能达到的最大速率(V_(max))随光强升高而显著增大,净光合作用速率为最大速率一半时的底物浓度(K_m)在低光下显著低于高、中光下。这表明低光上调了藻体的无机碳利用能力。短期温度实验表明,高光培养下,酶失活一半时的温度(T_h)显著增加,而低光下藻体的净光合作用速率的最适温度(T_(opt))显著降低,这表明低光显著提高了缘管浒苔对环境的敏感性,而高光下的藻体更适应高温的环境,这为绿潮在5—7月份大规模暴发的现象研究提供了一定的理论参考依据。
        Seaweeds receive a different light intensity and temperature in a different season and/or depth, resulting in different physiological responses. We studied the impacts of light intensity on photosynthetic physiological characteristics and on short-term temperature effects of green algae Ulva linza. Samples of U. linza were collected in the Gaogong Island of Lianyungang, Jiangsu(119.3°E, 34.5°N). Three light intensities of low, medium, and high were tested, which were 90, 200, and 400μE/(m~2·s), respectively. The results showed that the net photosynthetic rate of the algae under the low light intensity was significantly smaller than those under high and medium light intensities, and the light intensity showed no significant effect on the respiration. Under the high light intensity, the maximum photochemistry efficiency(F_v/F_m) value of the algae was significantly smaller than those under medium and low light intensities, and the non-photochemical quenching(NPQ) value decreased significantly with a decrease of light intensity. In addition, under the low light intensity, the contents of chlorophyll a and b were significantly greater than those under high and medium light intensities. The maximum relative electron transfer rate(rETR_(max)) varied significantly with the light intensity, being the highest under the medium and the lowest under the low light intensity. The saturation light intensity(I_k) under the low light intensity was significantly smaller than those under high and medium light intensities. At a different concentration of dissolved inorganic carbon(DIC), the maximum rate(V_(max)) of net photosynthesis with no carbon limitation increased significantly with the increase of light intensity, and under a low light intensity, the substrate concentration at half of the maximum net photosynthetic rate(K_m) was significantly lower than those under high and medium light intensities. Under the low light intensity, the inorganic carbon utilization capacity of the algae bodies upregulated. Our experiments on short-term temperature effect showed that the temperature(T_h) at which half of the enzymes inactivated under high light intensity increased significantly, while the optimal temperature(Topt) of net photosynthesis rate of the algae under low light intensity decreased significantly. This indicated that low light intensity could improve significantly the sensitivity of the algae to an ambient temperature change, and algae under high light intensity were stronger against a high temperature. Therefore, this study could offer a theoretical reference for understanding a large-scale outbreak of green tide from May to July in the study area.
引文
王宗灵,傅明珠,肖洁等,2018.黄海浒苔绿潮研究进展.海洋学报,40(2):1-13
    方同光,张学明,赵学武,1964.几种海藻的渗透生理与它们在潮间带分布的关系.海洋与湖沼,6(1):85-96
    汤文仲,李信书,黄海燕等,2009.不同光强和温度对长石莼(缘管浒苔)光合作用和叶绿素荧光参数的影响.水产学报,33(5):762-769
    张寒野,吴望星,宋丽珍等,2006.条浒苔海区试栽培及外界因子对藻体生长的影响.中国水产科学,13(5):781-786
    Adir N,Zer H,Shochat S et al,2003.Photoinhibition-a historical perspective.Photosynthesis Research,76(1-3):343-370
    Badger M R,Price G D,1994.The role of carbonic anhydrase in photosynthesis.Annual Review of Plant Physiology and Plant Molecular Biology,45(1):369-392
    Collini E,Wong C Y,Wilk K E et al,2010.Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature.Nature,463(7281):644-647
    Dunck B,Lima-Fernandes E,Cássio F et al,2015.Responses of primary production,leaf litter decomposition and associated communities to stream eutrophication.Environmental Pollution,202:32-40
    Falkowski P G,LaRoche J,1991.Acclimation to spectral irradiance in algae.Journal of Phycology,27(1):8-14
    Figueroa F L,Barufi J B,Malta E J et al,2014.Short-term effects of increasing CO2,nitrate and temperature on three Mediterranean macroalgae:biochemical composition.Aquatic Biology,22:177-193
    Gordillo F J L,Carmona R,Vi?egla B et al,2016.Effects of simultaneous increase in temperature and ocean acidification on biochemical composition and photosynthetic performance of common macroalgae from Kongsfjorden(Svalbard).Polar Biology,39(11):1993-2007
    Grote B,2016.Bioremediation of aquaculture wastewater:evaluating the prospects of the red alga Palmaria palmata(Rhodophyta)for nitrogen uptake.Journal of Applied Phycology,28(5):3075-3082
    Heber U,Bilger W,Shuvalov V A,2006.Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation.Journal of Experimental Botany,57(12):2993-3006
    Huo Y Z,Zhang J H,Chen L P et al,2013.Green algae blooms caused by Ulva prolifera in the southern Yellow Sea:Identification of the original bloom location and evaluation of biological processes occurring during the early northward floating period.Limnology and Oceanography,58(6):2206-2218
    Jassby A D,Platt T,1976.Mathematical formulation of the relationship between photosynthesis and light for phytoplankton.Limnology and Oceanography,21(4):540-547
    Ji Y,Xu Z G,Zou D H et al,2016.Ecophysiological responses of marine macroalgae to climate change factors.Journal of Applied Phycology,28(5):2953-2967
    Kang E J,Kim J H,Kim K et al,2016.Adaptations of a green tide forming Ulva linza(Ulvophyceae,Chlorophyta)to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea.Phycologia,55(2):210-218
    Kim J H,Kang E J,Park M G et al,2011.Effects of temperature and irradiance on photosynthesis and growth of a green-tide-forming species(Ulva linza)in the Yellow Sea.Journal of Applied Phycology,23(3):421-432
    Liu D Y,Keesing J K,Xing Q G et al,2009.World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China.Marine Pollution Bulletin,58(6):888-895
    Liu L,Zou D H,Jiang H et al,2017.Effects of increased CO2and temperature on the growth and photosynthesis in the marine macroalga Gracilaria lemaneiformis from the coastal waters of South China.Journal of Applied Phycology,30(2):1271-1280
    Luo M B,Liu F,Xu Z L et al,2012.Growth and nutrient uptake capacity of two co-occurring species,Ulva prolifera and Ulva linza.Aquatic Botany,100:18-24
    Martins I,Marques J C,2002.A model for the growth of opportunistic macroalgae(Enteromorpha sp.)in tidal estuaries.Estuarine,Coastal and Shelf Science,55(2):247-257
    Meyer F W,Vogel N,Teichberg M et al,2015.The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon(DIC and DOC)availability.PLoS One,10(8):e0133596
    Mou S,Zhang X,Dong M et al,2013.Photoprotection in the green tidal alga Ulva prolifera:role of LHCSR and PsbSproteins in response to high light stress.Plant Biology,15(6):1033-1039
    Neori A,Chopin T,Troell M et al,2004.Integrated aquaculture:rationale,evolution and state of the art emphasizing seaweed biofiltration in modern mariculture.Aquaculture,231(1-4):361-391
    Pati M P,Sharma S D,Nayak L et al,2016.Uses of seaweed and its application to human welfare:A review.International Journal of Pharmacy and Pharmaceutical Sciences,8(10):12-20
    Raven J A,2010.Inorganic carbon acquisition by eukaryotic algae:four current questions.Photosynthesis Research,106(1-2):123-134
    Sage R F,Kubien D S,2007.The temperature response of C3 and C4 photosynthesis.Plant,Cell&Environment,30(9):1086-1106
    Schaum C E,Barton S,Bestion E et al,2017.Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis.Nature Ecology&Evolution,1(4):0094
    Smetacek V,Zingone A,2013.Green and golden seaweed tides on the rise.Nature,504(7478):84-88
    Smith S V,1981.Marine macrophytes as a global carbon sink.Science,211(4484):838-840
    Sobrino C,Neale P J,2007.Short-term and long-term effects of temperature on photosynthesis in the diatom Thalassiosira pseudonana under UVR exposures.Journal of Phycology,43(3):426-436
    Wallace R B,Gobler C J,2015.Factors controlling blooms of microalgae and macroalgae(Ulva rigida)in a eutrophic,urban estuary:Jamaica Bay,NY,USA.Estuaries and Coasts,38(2):519-533
    Wang Z L,Xiao J,Fan S L et al,2015.Who made the world's largest green tide in China?-an integrated study on the initiation and early development of the green tide in Yellow Sea.Limnology and Oceanography,60(4):1105-1117
    Wellburn A R,1994.The spectral determination of chlorophylls a and b,as well as total carotenoids,using various solvents with spectrophotometers of different resolution.Journal of Plant Physiology,144(3):307-313
    Wells M L,Potin P,Craigie J S et al,2017.Algae as nutritional and functional food sources:revisiting our understanding.Journal of Applied Phycology,29(2):949-982
    Wu H L,Huo Y Z,Hu M et al,2015.Eutrophication assessment and bioremediation strategy using seaweeds co-cultured with aquatic animals in an enclosed bay in China.Marine Pollution Bulletin,95(1):342-349
    Xu J T,Gao K S,2012.Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga.Plant Physiology,160(4):1762-1769
    Zertuche-González J A,Camacho-Ibar V F,Pacheco-Ruíz I et al,2009.The role of Ulva spp.as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence.Journal of Applied Phycology,21(6):729-736
    Zhang T T,Zheng C Y,Hu W et al,2010.The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa.Journal of Applied Phycology,22(1):71-77
    Zou D H,Gao K S,2014.Temperature response of photosynthetic light-and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis(Gracilariales,Rhodophyta).Journal of Phycology,50(2):366-375

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700