潏河冬季潜流带水交换对沉积物间隙水水质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of hyporheic water exchange on quality of sediment pore water for the Juehe River in winter
  • 作者:郭伟强 ; 宋进喜 ; 刘琪 ; 张国涛 ; 王伟泽 ; 唐斌 ; 窦馨逸
  • 英文作者:GUO Weiqiang;SONG Jinxi;LIU Qi;ZHANG Guotao;WANG Weize;TANG Bin;DOU Xinyi;Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity,College of Urban and Environmental Sciences,Northwest University;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources;Key Laboratory of Mountain Hazards and Earth Surface Process,Institute of Mountain Hazards and Environment,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:潏河 ; 潜流带 ; 间隙水 ; 含量 ; 空间变化
  • 英文关键词:Juehe River;;hyporheic zone;;pore water;;concentration;;spatial variability
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:西北大学城市与环境学院陕西省地表系统与环境承载力重点实验室;中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;中国科学院成都山地灾害与环境研究所中国科学院山地灾害与地表过程重点实验室;中国科学院大学;
  • 出版日期:2018-01-18 15:17
  • 出版单位:环境科学学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金(No.51379175,51679200);; 陕西省重点科技创新团队计划(No.2014KCT-27)~~
  • 语种:中文;
  • 页:HJXX201805032
  • 页数:11
  • CN:05
  • ISSN:11-1843/X
  • 分类号:272-282
摘要
潜流带作为河流地表水-地下水系统相互作用的交汇区域带,是影响河水、间隙水与地下水水质的主要驱动力之一,对河流生态系统中的水文循环、污染物迁移转化等过程具有重要的意义.本研究采用基于一维热扩散对流方程的温度梯度法,于2016年12月对潏河研究河段21个测试点位进行了沉积物的野外原位垂向温度同步测试,并对其与沉积物间隙水中阴阳离子含量之间的关系进行了分析.结果表明:21个测试点位的潜流带水交换方式均为上升流,水交换量值变化范围较大,左右两岸水交换量值均大于河道中心水交换量值,影响其变化的主要因素是河床地形和沉积物粒径大小;Ca~(2+)、Na~+、Mg~(2+)、HCO_3~-和SO_4~(2-)在沉积物间隙水中的平均含量更接近于其在地下水中的平均含量,而K~+、NH_4~+和Cl~-在沉积物间隙水中的平均含量与其在地下水中的平均含量具有显著差异性;此外,沉积物间隙水中主要阴阳离子含量在河流横断面具有明显的横向空间变化特征,与河道中心相比,河道左右两岸沉积物间隙水中Ca~(2+)、Mg~(2+)和SO_4~(2-)含量均较高,而NH_4~+和Cl~-含量较低;采用Pearson相关分析和线性拟合方法发现,潜流带水交换量与沉积物间隙水中Ca~(2+)、Mg~(2+)和SO_4~(2-)含量呈正相关关系,与K~+、NH_4~+、Cl~-含量呈负相关关系,而与Na~+、HCO_3~-含量的相关性未通过检验,说明其不存在显著相关性.
        Hyporheic zone is the ecotone between groundwater and surface water. It is one of the controlling factors for the quality of river water,pore water and groundwater,which has great significance in the hydrological cycle and contaminant transportation. Twenty one test sites in the Juehe River were selected to conduct the in-situ synchronous test of vertical temperature profiles in December 2016. One-dimension heat advection-diffusion equation was used to estimate the pattern and magnitude of hyporheic water exchange. Its relationship with main cations and anions in sediment pore water was subsequently analyzed. The results showed patterns of upward hyorheic water exchange and relatively large magnitude of water exchange exsited in 21 testsites. Stream topography and sediment grain size were the main elements to influence this distribution. The average concentrations of Ca~(2+),Na~+,Mg~(2+),HCO_3~- and SO_4~(2-) in sedeiment pore water was comparatively close to those in groundwater. However,for K~+,NH_4~+ and Cl-,the average concentrations in sediment pore water were significantly different from those in groundwater. Furthermore,spatial variability existed across longitudinal section. Specifically,the concentrations of Ca~(2+),Mg~(2+)and SO_4~(2-) in the left and right banks were higher than the central channel,but for NH_4~+ and Cl-,the pattern was reversed. Pearson correlation analysis and linear fit demonstrated good agreement between the water exchange magnitude and concentrations of Ca~(2+),Mg~(2+)and SO_4~(2-). For the concentrations of K~+,NH_4~+ and Cl-,a negtive correlation with water exchange magnitude existed. However,the relationship between the concentrations of Na~+and HCO_3~- and water exchange magnitude failed to pass the test,indicating no significant correlation.
引文
Anderson M P.2005.Heat as a ground water tracer[J].Groundwater,43(6):951-968
    Anibas C,Fleckenstein J H,Volze N,et al.2009.Transient or steadystate?Using vertical temperature profiles to quantify groundwatersurface water exchange[J].Hydrological Processes,23(15):2165-2177
    Anibas C,Buis K,Verhoeven R,et al.2011.A simple thermal mapping method for seasonal spatial patterns of groundwater-surface water interaction[J].Journal of Hydrology,397(1):93-104
    Arriaga M A,Leap D I.2006.Using solver to determine vertical groundwater velocities by temperature variations,Purdue University,Indiana,USA[J].Hydrogeology Journal,14(1/2):253-263
    Boano F,Harvey J W,Marion A,et al.2014.Hyporheic flow and transport processes:Mechanisms,models,and biogeochemical implications[J].Reviews of Geophysics,52(4):603-679
    Boulton A J,Datry T,Kasahara T,et al.2010.Ecology and management of the hyporheic zone:stream-groundwater interactions of running waters and their floodplains[J].Journal of the North American Benthological Society,29(1):26-40
    Boyle J M,Saleem Z.1979.Determination of recharge rates using temperature-depth profiles in wells[J].Water Resources Research,15(6):1616-1622
    Brunke M,Gonser T.1997.The ecological significance of exchange processes between rivers and groundwater[J].Freshwater Biology,37(1):1-33
    Bush N J.2006.Natural water chemistry and vertical hydraulic gradient in the hyporheic zone of the Cosumnes River near Sacramento,California[D].Sacramento:California State University.1-186
    Butturini A,Bernal S,Sabater S,et al.2002.The influence of riparianhyporheic zone on the hydrological responses in an intermittent stream[J].Hydrology and Earth System Sciences Discussions,6(3):515-526
    Cardenas M B,Wilson J,Zlotnik V A.2004.Impact of heterogeneity,bed forms,and stream curvature on subchannel hyporheic exchange[J].Water Resources Research,40(8):474-480
    Cardenas M B,Wilson J.2006.The influence of ambient groundwater discharge on exchange zones induced by current-bedform interactions[J].Journal of Hydrology,331(1):103-109
    陈骏,杨杰东,李春雷.2001.大陆风化与全球气候变化[J].地球科学进展,16(3):399-405
    Chen X H,Mi H C,He H M,et al.2014.Hydraulic conductivity variation within and between layers of a high floodplain profile[J].Journal of Hydrology,515(515):147-155
    Cranswick R H,Cook P G,Lamontagne S.2014.Hyporheic zone exchange fluxes and residence times inferred from riverbed temperature and radon data[J].Journal of Hydrology,519(Part B):1870-1881
    Datry T,Larned S T,Scarsbrook M R.2007.Responses of hyporheic invertebrate assemblages to large-scale variation in flow permanence and surface-subsurface exchange[J].Freshwater Biology,52(8):1452-1462
    Datry T,Lamouroux N,Thivin G,et al.2015.Estimation of sediment hydraulic conductivity in river reaches and its potential use to evaluate streambed clogging[J].River Research&Applications,31(7):880-891
    Gariglio F P,Tonina D,Luce C H.2013.Spatiotemporal variability of hyporheic exchange through a pool-riffle-pool sequence[J].Water Resources Research,49(11):7185-7204
    Harvey J W,Wagner B J.2000.Streams and Ground Waters[M].San Diego:Academic Press.3-44
    Hatch C E,Fisher A T,Revenaugh J S,et al.2006.Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records:Method development[J].Water Resources Research,42(10):2405-2411
    胡春华,周文斌,夏思奇.2011.鄱阳湖流域水化学主离子特征及其来源分析[J].环境化学,30(9):1620-1626
    Hu M,Stallard R F,Edmond J M.1982.Major ion chemistry of some large Chinese rivers[J].Nature,298(5874):550-553
    Hyun Y,Kim H,Lee S S,et al.2011.Characterizing streambed water fluxes using temperature and head data on multiple spatial scales in Munsan stream,South Korea[J].Journal of Hydrology,402(3/4):377-387
    Jiang W W,Song J X,Zhang J L,et al.2015.Spatial variability of streambed vertical hydraulic conductivity and its relation to distinctive stream morphologies in the Beiluo River,Shaanxi Province,China[J].Hydrogeology Journal,23(7):1617-1626
    金光球,李凌.2008.河流中潜流交换研究进展[J].水科学进展,19(2):285-293
    Kalbus E,Reinstorf F,Schirmer M.2006.Measuring methods for groundwater-surface water interactions:a review[J].Hydrology and Earth System Sciences,10(6):873-887
    Kennedy C D,Murdoch L C,Genereux D P,et al.2010.Comparison of Darcian flux calculations and seepage meter measurements in a sandy streambed in North Carolina,United States[J].Water Resources Research,46(9):5109-5115
    李晶莹,张经.2002.流域盆地的风化作用与全球气候变化[J].地球科学进展,17(3):411-419
    Liu Q,Song J X,Zhang G T,et al.2017.Effects of hyporheic water fluxes and sediment grain size on the concentration and diffusive flux of heavy metals in the streambed[J].International Journal of Environmental Research&Public Health,14(9):1020
    Loheide S P,Gorelick S M.2006.Quantifying stream-aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories[J].Environmental Science&Technology,40(10):3336-3341
    Min L L,Yu J J,Liu C M,et al.2013.The spatial variability of streambed vertical hydraulic conductivity in an intermittent river,northwestern China[J].Environmental Earth Sciences,69(3):873-883
    倪童.2016.秦汉长安城南之潏河研究[J].赤峰学院学报,37(8):25-27
    任朝亮,宋进喜,杨小刚,等.2013.底栖动物扰动对河床渗透性的影响研究[J].环境科学,34(11):4275-4281
    Schmidt C,Jr B C,Bayer-Raich M,et al.2007.Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures[J].Journal of Hydrology,347(3):292-307
    Sebok E,Duque C,Engesgaard P,et al.2015.Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies:channel bend and straight channel[J].Hydrological Processes,29(3):458-472
    Song J X,Chen X H,Cheng C,et al.2009.Feasibility of grain-size analysis methods for determination of vertical hydraulic conductivity of streambeds[J].Journal of Hydrology,375(3/4):428-437
    Song J X,Cheng D D,Li Q,et al.2015a.An evaluation of river health for the Weihe River in Shaanxi Province,China[J].Advances in Meteorology,2015(1):1-13
    Song J X,Yang X G,Zhang J L,et al.2015b.Assessing the variability of heavy metal concentrations in liquid-solid two-phase and related environmental risks in the Weihe River of Shaanxi Province,China[J].International Journal of Environmental Research and Public Health,12(7):8243-8262
    Song J X,Jiang W W,Xu S F,et al.2016.Heterogeneity of hydraulic conductivity and Darcian flux in the submerged streambed and adjacent exposed stream bank of the Beiluo River,northwest China[J].Hydrogeology Journal,24(8):1-14
    Song J X,Zhang G T,Wang W Z,et al.2017.Variability in the vertical hyporheic water exchange affected by hydraulic conductivity and river morphology at a natural confluent meander bend[J].Hydrological Processes,31(19):1-14
    Stallman R.1965.Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature[J].Journal of Geophysical Research,70(12):2821-2827
    Storey R G,Howard K W F,Williams D D.2003.Factors controlling rifflescale hyporheic exchange flows and their seasonal changes in a gaining stream:A three-dimensional groundwater flow model[J].Water Resources Research,39(2):1034
    孙平安,于奭,莫付珍,等.2016.不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例[J].环境科学,37(1):123-131
    唐胜田,康永祥,张景群.2013.西安市长安区潏河城市核心段滨水景观规划研究[J].西北林学院学报,28(2):238-242
    滕彦国,左锐,王金生.2007.地表水-地下水的交错带及其生态功能[J].地球与环境,35(1):1-8
    W9rman A,Packman A I,Johansson H,et al.2002.Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers[J].Water Resources Research,38(1):1-15
    袁兴中,罗固源.2003.溪流生态系统潜流带生态学研究概述[J].生态学报,23(5):956-964
    Zhou Y,Wenninger J,Yang Z,et al.2013.Groundwater-surface water interactions,vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment,China-a synthesis[J].Hydrology and Earth System Sciences,17(7):2435-2447
    朱静思,束龙仓,鲁程鹏.2013.基于热追踪方法的河道垂向潜流通量的非均质性研究[J].水利学报,44(7):818-825

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700