Ib型金刚石大单晶的限形生长
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Shape controlled growth for type Ib large diamond crystals
  • 作者:王君卓 ; 李尚升 ; 宿太超 ; 胡美华 ; 胡强 ; 吴玉敏 ; 王健康 ; 韩飞 ; 于昆鹏 ; 高广进 ; 郭明明 ; 贾晓鹏 ; 马红安 ; 肖宏宇
  • 英文作者:Wang Jun-Zhuo;Li Shang-Sheng;Su Tai-Chao;Hu Mei-Hua;Hu Qiang;Wu Yu-Min;Wang Jian-Kang;Han Fei;Yu Kun-Peng;Gao Guang-Jin;Guo Ming-Ming;Jia Xiao-Peng;Ma Hong-An;Xiao Hong-Yu;School of Materials Science and Engineering, Henan Polytechnic University, Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in University of Henan Province;School of Physics and Electronic Information Engineering, Henan Polytechnic University;State Key Laboratory of Superhard Materials, Jilin University;Department of Mathematics and Physics, Luoyang Institute of Science and Technology;
  • 关键词:高温高压 ; 金刚石大单晶 ; 晶形 ; 高径比
  • 英文关键词:high temperature and high pressure;;large diamond crystal;;the shape of crystal;;the ratio of height to diameter
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:河南理工大学材料科学与工程学院, 环境友好型无机材料河南省高校重点实验室培育基地;河南理工大学物理与电子信息学院;吉林大学超硬材料国家重点实验室;洛阳理工学院数学与物理教学部;
  • 出版日期:2018-08-13 14:33
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:51772120);; 河南省科技攻关项目(批准号:172102210283,162102210275);; 河南省高校重点科研项目(批准号:18A430017,17A430020);; 河南理工大学材料工程专业学位研究生专业实践示范基地(批准号:2016YJD03)资助的课题~~
  • 语种:中文;
  • 页:WLXB201816028
  • 页数:7
  • CN:16
  • ISSN:11-1958/O4
  • 分类号:354-360
摘要
金刚石的限形生长有利于其后续加工.对于磨料级金刚石限形生长的研究已经比较透彻,但金刚石大单晶的限形生长尚缺乏全面系统的研究.本文以Fe Ni(64wt%:36wt%)合金为触媒,利用高温高压下的温度梯度法在5.6 GPa时对不同温度下分别沿(100)面和(111)面生长的Ib型金刚石大单晶的晶形进行了研究.研究表明:随着温度的升高,沿(100)晶面生长的金刚石大单晶的晶形分别为板状、塔状直至尖塔状,而沿(111)面生长的金刚石大单晶的晶形则分别为塔状和板状;分析了不同温度下分别沿(100)面和(111)面生长金刚石大单晶不同晶形高径比的变化情况.利用不同压力和温度下的金刚石大单晶合成实验绘制了沿(100)和(111)面生长金刚石大单晶的晶形在V形生长区域内的分布示意图,表明沿(111)面生长的金刚石大单晶V形区温度下限明显比以(100)面生长的高,而沿这两面生长金刚石大单晶的V形区温度上限差别并不明显.对不同生长面V形区温度上下限的差别进行了解释,据此实现了Ib型金刚石大单晶的限形生长.
        The shape controlled growth of diamond is beneficial to its subsequent processing. The shape controlled growth for abrasive grade diamond, whose particle size is less than 1 mm, has been studied extensively, while the shape controlled growth of large diamond crystals, which have important commercial and scientific applications, has not been investigated in detail. Therefore, it is necessary to do further researches. In this study, we synthesize large type Ib diamond crystals and investigate their growth shapes at pressures of 5.3–5.9 GPa and temperatures of 1200–1370?C, by using Fe64 Ni36 alloy as the catalyst and(100) or(111) face of seed as growth face. Experimental results show that for the diamond crystals grown along the(100) face, the crystal shapes presents plate shape at 1206–1215?C, tower shape at 1216–1260?C,and tower steeple shape at 1261–1360?C; in sequence while for those grown along the(111) face, the crystal shape is of tower at 1233–1238?C and becomes plate at 1239–1364?C. The ratio of height to diameter, which can provide a standard to quantify the shape of a diamond, is used to describe the crystal shape in detail. For large diamond crystals growing along the(100) face, under a high pressure of 5.6 GPa, the ratio of height to diameter increases with temperature increasing but the ratio of height to diameter, when growing along the(111) face, decreases. The shape distributions of large diamond crystals in the V-shaped region can be determined in the experiments of large diamond crystal synthesis at different temperatures(1200–1370?C) and pressures(5.3 GPa, 5.6 GPa, 5.9 GPa). The lower limit temperature of large diamond crystal growing along the(111) face in the V-shape region is obviously higher than that growing along the(100) face, but the difference between the higher limit temperatures for growing along these two faces is not obvious.The difference between the lower temperature limits of large diamond crystals growing along the(100) and(111) face can be explained by the different energies of the crystal surface and diamond/graphite equilibrium line in the phase diagram of carbon/alloy. Therefore, it has been realized that the shapes for type Ib large diamond crystals are controlled.
引文
[1]Bundy F P,Hall H T,Strong H M,Wentorf R H 1955Nature 176 51
    [2]Chen Y N,Zhang Y,Yu W C,Gong M,Yang F,Liu R,Wang J M,Li L,Jing P,Wang Z G 2017 Micronano Electron.Technol.54 217(in Chinese)[陈亚男,张烨,郁万成,龚猛,杨霏,刘瑞,王嘉铭,李玲,金鹏,王占国2017微纳电子技术54 217]
    [3]Qin J M,Zhang Y,Cao J M,Tian L F 2011 Acta Phys.Sin.60 058102(in Chinese)[秦杰明,张莹,曹建明,田立飞2011物理学报60 058102]
    [4]Liu Y J,He D W,Wang P,Tang M J,Xu C,Wang W D,Liu J,Liu G D,Kou Z L 2017 Acta Phys.Sin.66038103(in Chinese)[刘银娟,贺端威,王培,唐明君,许超,王文丹,刘进,刘国端,寇自力2017物理学报66 038103]
    [5]Sumiya H,Toda N,Nishibayashi Y,Satoh S 1997 J.Crystal Growth 178 485
    [6]Li Z,Jia P,Li L 2009 Adv.Mater.Res.76 678
    [7]Li Z H,Zhao B 2011 Diamond&Abrasives Engineering31 1(in Chinese)[李志宏,赵博2011金刚石与磨料磨具工程31 1]
    [8]Wentorf R H 1971 J.Phys.Chem.75 1833
    [9]Strong H M,Chrenko R M 1971 J.Phys.Chem.75 1838
    [10]Sumiya H,Toda N,Satoh S 2005 Sei.Tech.Rev.60 10
    [11]Bovenkerk H P,Bundy F P,Hall H T,Strong H M,Wentorf R H 1959 Nature 184 1094
    [12]Bundy F P,Bovenkerk H P,Strong H M,Wentorf R H1961 J.Chem.Phys.35 383
    [13]Zhang S D,Zhu Y H 1995 Chin.J.High Pressure Phys.9 34(in Chinese)[张书达,朱瑶华1995高压物理学报934]
    [14]Fu H F,Zhu C M 1980 Geochimica 1 23(in Chinese)[傅慧芳,朱成明1980地球化学1 23]
    [15]Abbaschian R,Zhu H,Clarke C 2005 Diamond and Related Mater.14 1916
    [16]Hu M H,Bi N,Li S S,Su T C,Li X L,Hu Q,Jia X P,Ma H A 2013 Acta Phys.Sin.62 188103(in Chinese)[胡美华,毕宁,李尚升,宿太超,李小雷,胡强,贾晓鹏,马红安2013物理学报62 188103]
    [17]Hu M H,Bi N,Li S S,Su T C,Zhou A G,Hu Q,Jia X P,Ma H A 2015 Chin.Phys.B 24 038101
    [18]Zhang H,Li S S,Su T C,Hu M H,Li G H,Ma H A,Jia X P 2016 Chin.Phys.B 25 118104
    [19]Sumiya H,Toda N,Satoh S 2002 J.Crystal Growth237–239 1281
    [20]Zhou L,Jia X P,Ma H A,Zhen Y J,Li Y T 2009 Chin.Phys.B 18 333
    [21]Xiao H Y,Jia X P,Zang C Y,Li S S,Tian Y,Zhang Y F,Huang G F,Ma L Q,Ma H A 2008 Chin.Phys.Lett.25 1469

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700