欧亚大陆高山林线温度的差异性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature differences of timberlines in the Eurasian continent
  • 作者:赵芳 ; 朱连奇 ; 张百平 ; 韩芳 ; 姚永慧 ; 曹艳萍
  • 英文作者:ZHAO Fang;ZHU Lianqi;ZHANG Baiping;HAN Fang;YAO Yonghui;CAO Yanping;College of Environment and Planning,Henan University;State Key Laboratory of Resource and Environment Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application;School of Civil and Architectural Engineering,Shandong University of Technology;
  • 关键词:林线高度 ; 欧亚大陆 ; 气候因子 ; 温暖指数 ; 年生物温度
  • 英文关键词:timberline elevation;;Eurasia;;climatic factor;;warmth index;;annual biotemperature
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:河南大学环境与规划学院;中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室;江苏省地理信息资源开发与利用协同创新中心;山东理工大学建筑工程学院;
  • 出版日期:2018-01-08
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点基础研究计划(973)(2015CB452702);; 国家自然科学基金项目(41601091,41671090,41401111)
  • 语种:中文;
  • 页:STXB201801027
  • 页数:10
  • CN:01
  • ISSN:11-2031/Q
  • 分类号:268-277
摘要
尽管全球高山林线的形成在理论上具有相似的温度条件,但是由于不同气候区林线生态环境的复杂性,林线位置的热量状况具有明显的差异。为了探索林线温度的差异性和复杂性,从公开发表的文献中收集了欧亚大陆410个林线数据,基于公用的World Clim气候数据集计算了与林线存在有关的7个热量指标。结果表明:(1)欧亚大陆高山林线生长季温度变化较小,具有相对的稳定性;(2)不同气候区影响林线高度的主导气候因子变化较大,热带湿润气候区为年生物温度4.63℃、温暖指数21.72℃·月、年均温3.56℃,但在亚热带地中海气候区分别为年生物温度5.25℃、温暖指数29.37℃·月、年均温4.46℃;(3)通常认为的林线指示温度—最热月温度10℃仅存在温带海洋性气候区、亚寒带海洋性气候区和高原温带地区,年生物温度3℃仅存在亚寒带气候区,温暖指数15℃·月仅存在亚寒带大陆性气候区。这揭示了欧亚大陆及不同气候区林线温度的稳定性和变化性,有助于人们全面的认识林线的生态环境特征,深入探索复杂环境条件下林线高度变化的生态机理。
        Timberline,the transitional ecosystem between the uppermost closed montane forests and the treeless alpine meadows,is sensitive to climate change and has long attracted the attention of scientists in many fields of study. Previous research on timberline commonly focused on the relationships between timberline elevation and temperature factors to identify the common controlling factors. Many isotherms thus have been proposed to predict the existence of timberlines in mountain regions. Those isotherms commonly used include the mean temperature of 10 ℃ for the warmest month( MTWM),mean annual biotemperature( ABT) of 3 ℃,warmth index( WI) of 15 ℃ · month,etc. However,actual geographical distribution of timberlines often deviates from these isotherms. For examples,MTWM could be as low as 5—6 ℃ at tropical timberlines and as high as 15.8 ℃ in Norway. Moreover,a certain type of isotherm cannot reflect or completely cover up the diversity and complexity of timberline environment in different regions. To explore the temperature diversity of timberlines,we compiled data for 410 timberline sites in the Eurasian continent from published literatures; calculated seven thermalvariables from published World Clim dataset that are potentially associated with timberline elevation; and analyzed the variation of these climatic factors. The results reveal that: 1) although all temperature variables at timberline positions in the Eurasian continent have wide ranges,MTWM,ABT and WI,which are the representative climate indexes of growing season temperature,have a relatively narrow range. For example,MTWM varies from 6. 95 ℃ to 15. 64 ℃. This indicates that growing season temperatures are key climatic indexes for timberline existence in the Eurasian continent. 2) Temperature indicators associated with timberline elevation vary greatly across different climate zones. In the tropical humid zone,ABT is4.63 ℃,WI 21.72 ℃ ·month,AMT( annual mean temperature) 3.56 ℃; in the subtropical humid zone,ABT is 4.32℃,WI 19.19 ℃ ·month,MTWM 10.69 ℃; in the Mediterranean zone,ABT is 5.25 ℃,WI 29.37 ℃ ·month,AMT4.46 ℃; in the temperate marine zone,ABT is 3. 73 ℃,WI 16. 14 ℃ · month,MTWM 10. 31 ℃; in the temperate continental zone,ABT is 4.01 ℃,WI 21.47 ℃ ·month,MTWM 12.24 ℃; in the subarctic relatively marine zone,ABT is 2.98 ℃,WI 12.55 ℃ ·month,CI( Coldness index) 80.88 ℃ · month; in the subarctic relatively continental zone,ABT is 2.99 ℃,WI 15.47 ℃ ·month,MTWM 12.06 ℃; in the temperate zone of the Tibetan Plateau,ABT is 4.04 ℃,WI 18.02 ℃ · month,MTWM: 10. 3 ℃; and in the subfrigid zone of the Tibetan Plateau,ABT is 4. 18 ℃,WI 23. 1℃ ·month,MTWM 12. 5 ℃. 3) Of the commonly used timberline indicators,10 ℃ MTWM is only effective in the temperate oceanic,subarctic oceanic,and plateau temperate zone; 3 ℃ ABT and 15 ℃ ·month WI work well only in the subarctic zone. This study reveals the heterogeneity and complexity of timberline habitats in the Eurasian continent.Temperature differences of timberlines may be due to the lack of timberline species like Abies and Picea in the Mediterranean zone,drought and precipitation deficiency,mass elevation effect,etc.
引文
[1]Troll C.The Upper Timberlines in Different Climatic Zones.Arctic and Alpine Research,1973,5(3):A3-A18.
    [2]Hoch G,K9rner C.Growth and carbon relations of tree line forming conifers at constant vs.variable low temperatures.Journal of Ecology,2009,97(1):57-66.
    [3]Kollas C,Randin C F,Vitasse Y,K9rner C.How accurately can minimum temperatures at the cold limits of tree species be extrapolated from weather station data?Agricultural and Forest Meteorology,2014,184:257-266.
    [4]Harsch M A,Bader M Y.Treeline form—a potential key to understanding treeline dynamics.Global Ecology and Biogeography,2011,20(4):582-596.
    [5]Kullman L.Tree line population monitoring of Pinus sylvestris in the Swedish Scandes,1973-2005:implications for tree line theory and climate change ecology.Journal of Ecology,2007,95(1):41-52.
    [6]Miehe G,Miehe S,Koch K,Will M.Sacred forests in Tibet——using geographical information systems for forest rehabilitation.Mountain Research and Development,2003,23(4):324-328.
    [7]K9rner C,Paulsen J.A world-wide study of high altitude treeline temperatures.Journal of Biogeography,2004,31(5):713-732.
    [8]K9rner C.Alpine treelines:functional ecology of the global high elevation tree limits.Basel:Springer 2012:33-56.
    [9]Paulsen J,K9rner C.A climate-based model to predict potential treeline position around the globe.Alpine Botany,2014,124(1):1-12.
    [10]Daubenmire R.Alpine timberlines in the Americas and their interpretation.Butler University Botanical Studies,1954,11(8/17):119-136.
    [11]Grace J.Plant response to wind.London:Academic Press,1977:1-204.
    [12]Holdridge L R.Determination of world plant formations from simple climatic data.Science,1947,105(2727):367-368.
    [13]Harris S A.Comments on the Application of the Holdridge System for Classification of World Life Zones as Applied to Costa Rica Arctic and Alpine Research 1973,5(3):A187-A191
    [14]Ohsawa M.An interpretation of latitudinal patterns of forest limits in South and East Asian mountains.Journal of Ecology,1990,78(2):326-339.
    [15]Fang J Y,Ohsawa M,Kira T.Vertical vegetation zones along 30°N latitude in humid East Asia.Vegetatio,1996,126(2):135-149.
    [16]Hoch G,K9rner C.Global patterns of mobile carbon stores in trees at the high-elevation tree line.Global Ecology and Biogeography,2012,21(8):861-871.
    [17]Shi P,K9rner C,Hoch G.A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas.Functional Ecology,2008,22(2):213-220.
    [18]Holtmeier F K.Mountain timberlines ecology,patchiness,and dynamics,2nd edn.New York:Springer Verlag,2009:49-58.
    [19]Ohsawa M,Nainggolan P H J,Tanaka N,Anwar C.Altitudinal zonation of forest vegetation on Mount Kerinci,Sumatra:With comparisons to zonation in the temperate region of east Asia.Journal of Tropical Ecology,1985,1(3):193-216.
    [20]Janzen D H.Why Mountain Passes are Higher in the Tropics.The American Naturalist,1967,101(919):233-249.
    [21]Bader M Y,Ruijten J J A.A topography-based model of forest cover at the alpine treeline in the tropical Andes.Journal of Biogeography,2008,35(4):711-723.
    [22]Holtmeier F K,Broll G,Müterthies A,Anschlag K.Regeneration of trees in the treeline ecotone:northern Finnish Lapland.Fennia,2003,181(2):103-128.
    [23]Peterson D L.Climate,limiting factors and environmental change in high-altitude forests of Western North America//Beniston M,Innes J L,eds.The Impacts of Climate Variability on Forests.Berlin Heidelberg,Germany:Springer-Verlag,1998:191-208.
    [24]Gansert D.Treelines of the Japanese Alps——altitudinal distribution and species composition under contrasting winter climates.Flora-Morphology,Distribution,Functional Ecology of Plants,2004,199(2):143-156.
    [25]Miehe G,Miehe S.Zur oberen Waldgrenze in tropischen Gebirgen.Phytocoenologia,1994,24(1/4):53-110.
    [26]Odland A.Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance.Paloklimaforschung,1996,20:43-59.
    [27]Jobbágy E G,Jackson R B.Global controls of forest line elevation in the northern and southern hemispheres.Global Ecology and Biogeography,2000,9(3):253-268.
    [28]K9rner C.A re-assessment of high elevation treeline positions and their explanation Oecologia,1998,115(4):445-459.
    [29]Hijmans R j,Cameron S e,Parra J l,Jones P g,Jarvis A.Very high resolution interpolated climate surfaces for global land areas.International Journal of Climatology,2005,25(15):1965-1978.
    [30]Kessler M,Kluge J,Hemp A,Ohlemüller R.A global comparative analysis of elevational species richness patterns of ferns.Global Ecology and Biogeography,2011,20(6):868-880.
    [31]Szabo N D,Algar A C,Kerr J T.Reconciling topographic and climatic effects on widespread and range-restricted species richness.Global Ecology and Biogeography,2009,18(6):735-744.
    [32]Casalegno S,Amatulli G,Camia A,Nelson A,Pekkarinen A.Vulnerability of Pinus cembra L.in the Alps and the Carpathian mountains under present and future climates.Forest Ecology and Management 2010,259(4):750-761.
    [33]Kira T.Forest Ecosystems of East and Southeast Asia in a global perspective.Ecological Research,1991,6(2):185-200.
    [34]Harsch M A,Hulme P E,Mc Glone M S,Duncan R P.Are treelines advancing?A global meta-analysis of treeline response to climate warming.Ecology Letters,2009,12(10):1040-1049.
    [35]Tranquillini W.Physiological ecology of the Alpine timberline.Berlin Heidelberg and New York:Springer-Verlag,1979
    [36]Fang J Y,Lechowicz M J.Climatic limits for the present distribution of beech(Fagus L.)species in the world.Journal of Biogeography,2006,33(10):1804-1819.
    [37]王襄平,张玲,方精云.中国高山林线的分布高度与气候的关系.地理学报,2004,59(6):871-879.
    [38]Belda M,HoltanováE,Halenka T,KalvováJ.Climate classification revisited:from Koppen to Trewartha.Climate Research,2014,59(1):1-13.
    [39]Trewartha G T,Horn L H.An Introduction to Climate.5th ed.New York:Mc Graw Hill,1980:
    [40]郑度.中国生态地理区域系统研究.北京:商务印书馆,2008
    [41]中国科学院青藏高原综合科学考察队.西藏植被.北京:科学出版社,1988
    [42]Schickhoff U.The Upper timberline in the Himalayas,Hindu Kush and Karakorum:a review of geographical and ecological aspects//Broll G and Keplin B.Mountain Ecosystems:Studies in Treeline Ecology.Berlin Heidelberg:Springer-Verlag,2005:275-354.
    [43]Oka S.Controlling Factors of the Forest Limit Altitude in Japanese Mountains.Journal of Geography,1991,100(5):673-696.
    [44]李文华,冷允法,胡涌.云南横断山区森林植被分布与水热因子相关的定量化研究//中国科学院青藏高原综合科学考察队.青藏高原研究-横断山考察专集(一).昆明:云南人民出版社,1983:185-205.
    [45]Ellenberg H.Vegetation ecology of central Europe.4th ed.New York:Cambridge University Press,1988
    [46]Henning I.Horizontal and veritcal arrangement of vegetation in the Ural-System//Troll C.Geoecology of the High Mountain Regions of Euroasia.Wiesbaden:Franz Steiner Verlag Gmbh,1972:264-275.
    [47]郑远长.青藏高原垂直自然带结构类型研究.云南地理环境研究,1997,9(2):43-52.
    [48]Dalen L,Hofgaard A.Differential regional treeline dynamics in the Scandes Mountains.Arctic,Antarctic,and Alpine Research,2005,37(3):284-296.
    [49]Malyshev L.Levels of the upper forest boundary in Northern Asia.Vegetatio,1993,109(2):175-186.
    [50]陈桂琛,彭敏,黄荣福,卢学峰.祁连山地区植被特征及其分布规律.植物学报,1994,36(1):63-72.
    [51]刘华训.我国山地植被的垂直分布规律.地理学报,1981,36(3):267-279.
    [52]Miehe G,Miehe S,Vogel J,Co S,Duo L.Highest treeline in the northern hemisphere found in southern Tibet.Mountain Research and Development,2007,27(2):169-173.
    [53]Stevens G C,Fox J F.The Causes of Treeline.Annual Review of Ecology and Systematics,1991,22:177-191.
    [54]Wardle P.New Zealand timberlines.1.Growth and survival of native and introduced tree species in the Craigieburn Range,Canterbury.New Zealand Journal of Botany,1985,23(2):219-234.
    [55]Grebenshchikov O S.Vegetation structure in the high mountains of the Balkan Peninsula and the Caucasus,USSR.Arctic and Alpine Research,1978,10(2):441-447.
    [56]Vescovi E,Ammann B,Ravazzi C,Tinner W.A new Late-glacial and Holocene record of vegetation and fire history from Lago del Greppo,northern Apennines,Italy.Vegetation History and Archaeobotany,2010,19(3):219-233.
    [57]郑度,李炳元.青藏高原自然环境的演化与分异.地理研究,1990,9(2):1-10.
    [58]Yao Y H,Zhang B P.MODIS-based air temperature estimation in the southeastern Tibetan Plateau and neighboring areas.Journal of Geographical Sciences,2012,22(1):152-166.
    [59]姚永慧,张百平.基于MODIS数据的青藏高原气温与增温效应估算.地理学报,2013,68(1):95-107.
    [60]姚永慧,徐美,张百平.青藏高原增温效应对垂直带谱的影响.地理学报,2015,70(3):407-419.
    [61]Yao Y H,Zhang B P.The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines.International Journal of Climatology,2014,35(8):1833-1846.
    [62]Yao Y H,Zhang B P.A Preliminary Study of the Heating Effect of the Tibetan Plateau.PLo S ONE,2013,8(7):e68750.
    [63]Liang E Y,Dawadi B,Pederson N,Eckstein D.Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature?Ecology 2014,95(9):2453-2465.
    [64]K9rner C.The use of‘altitude’in ecological research.Trends in Ecology&Evolution,2007,22(11):569-574.
    [65]Li W H,Chou P.The Geographical Distribution of the Spruce-Fir Forest in China and Its Modelling.Mountain Research and Development,1984,4(3):203-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700