云南松林分平均胸径生长模型及模型参数环境解释
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Average DBH growth model of a stand with environmental parameters for Pinus yunnanensis in central Yunnan, China
  • 作者:罗恒春 ; 张超 ; 魏安超 ; 张一 ; 黄田 ; 余哲修
  • 英文作者:LUO Hengchun;ZHANG Chao;WEI Anchao;ZHANG Yi;HUANG Tian;YU Zhexiu;College of Forestry, Southwest Forestry University;
  • 关键词:森林测计学 ; 云南松 ; 生长模型 ; 参数 ; 环境解释
  • 英文关键词:forest mensuration;;Pinus yunnanensis;;growth model;;parameter;;environmental interpretation
  • 中文刊名:ZJLX
  • 英文刊名:Journal of Zhejiang A & F University
  • 机构:西南林业大学林学院;
  • 出版日期:2018-11-30
  • 出版单位:浙江农林大学学报
  • 年:2018
  • 期:v.35;No.157
  • 基金:国家自然科学基金资助项目(31460195,31660236);; 云南省农业基础研究联合专项[2017FG001(-017)]
  • 语种:中文;
  • 页:ZJLX201806012
  • 页数:9
  • CN:06
  • ISSN:33-1370/S
  • 分类号:96-104
摘要
云南松Pinus yunnanensis作为中国西南地区的主要建群树种,在西南地区占有重要地位,研建其林分生长模型以及对模型参数进行环境解释,可为气候变暖背景下研究云南松林分的生长动态提供经验模型。基于云南省森林资源连续清查数据和气象数据,以为云南松林为研究对象,结合6种基本理论方程,采用非线性回归方法构建林分平均胸径的生长模型,并对最优模型的参数进行环境解释。结果表明:(1)以决定系数(R2)和均方根误差(ERMS)为指标,从6个基础模型中选定林分平均胸径最优生长模型为坎派兹(Gompertz)模型, R2达到0.648, ERMS为3.384;(2)将各环境影响因子同时引入到2个参数组合位置上时的模型作为解释该环境因子对林分平均胸径生长模型影响的最佳模型形式;(3)各环境影响因子对林分胸径生长模型的影响程度大小排序为湿润指数>海拔>年平均降水量>潜在蒸散量>年平均气温>温暖指数>郁闭度>年均生物学温度>坡度。(4)地形因子和气候因子与林分平均胸径生长之间的关系有正有负,地形因子中的海拔因子对林分平均胸径的影响不大,气象因子中温度对林分平均胸径生长的影响是通过对降水的制约来实现的。
        Pinus yunnanensis is the main dominant species and plays an important role in southwest China. An empirical model was provided to study growth dynamics of P. yunnanensis with global climate warming using a stand growth model and analyzing the relationship between parameters of an optimal model and a model with environmental impact factors. The growth model for average DBH of a stand was established with a nonlinear regression model. The model was based on data in the continuous forest inventories(CFI) for Yunnan Province along with meteorological data and then combined with six kinds of fundamental theoretical equations. Results showed:(1) the Gompertz Model was selected from the optimal model using the parameters of maximum coefficient of determination(R2= 0.648) and the minimum root mean square error(RMSE= 3.384).(2) The degree of influence for environmental impact factors on the DBH growth model was humidity index >altitude>mean annual precipitation>potential evapotranspiration >mean annual temperature >warmth index>canopy density>soil thickness>slope.(3) The relationship of average DBH growth of the stand to topographic factors and climatic factors were positive or negative. Topographic factors, such as slope, had little effect on stand DBH growth. Also, temperature influenced mean DBH growth through control of precipitation. In conclusion, the best model introduced environmental factors as a combination of the two parameters(R2 and RMSE) to explain the influence of environmental factors on average DBH of the growth model.
引文
[1] BROWN R M, GEVORKIANTZ S R. Volume, Yield, and Stand Tables for Tree Species in the Lake States[M].[s.l.]:Minnesota Agricultural Experiment Station, 1934.
    [2] PENNING de VRIES F W T. Modeling of Growth and Production[M]. Heidelberg:Springer Berlin, 1983:117-150.
    [3] REINEKE L H. Perfecting a stand-density index for even-age forests[J]. J Agric Res, 1933, 46(1):627-638.
    [4] GADOW K V, HUI Gangying. Modelling Forest Development[M]. Dordrecht:Springer, 1999.
    [5] VANCLAY J K. Modelling Forest Growth and Yield:Applications to Mixed Tropical Forests[M]. Wallingford:CAB International, 1994.
    [6] BRUCE D, WENSEL L C. Medeling forest growth:approaches, definition and problems[M]//EK A R, SHIFLEY S R,BURK T E. Forest Growth Modeling and Prediction Volume 1.[s. l.]:USDA Forest Service, North Central Forest Experiment Station, 1987:1-8
    [7]唐守正,李希菲,孟昭和.林分生长模型研究的进展[J].林业科学研究, 1993, 6(6):672-679.TANG Shouzheng, LI Xifei, MENG Zhaohe. The development of studies on stand growth models[J]. For Res, 1993, 6(6):672-679.
    [8]胥辉.思茅松天然次生林林分生长模型的研究[J].云南林业科技, 2001(2):13-16.XU Hui. Study on growth model of Pinus kesiya var. langbianensis natural secondary forest[J]. J Yunnan For Sci Technol, 2001(2):13-16.
    [9]陈建新,王明怀,曾令山.秃杉人工林生长过程[J].广东林业科技, 2007, 23(1):71-75.CHEN Jianxin, WANG Minghuai, ZENG Lingshan. Study on growth process of Taiwania flousiana plantation[J]. J For Sci Technol Guangdong, 2007, 23(1):71-75.
    [10]田新辉,孙荣喜,李军,等. 107杨人工林密度对林木生长的影响[J].林业科学, 2011, 47(3):184-188.TIAN Xinhui, SUN Rongxi, LI Jun, et al. Effects of stand density on growth of Populus×euramericana ‘Neva’ plantations[J]. Sci Silv Sin, 2011, 47(3):184-188.
    [11]郑小贤.信州落叶松人工林生长模型及其系统收获表的研究[J].林业科学, 1997, 33(1):42-50.ZHENG Xiaoxian. Growth model and constructing a system yield table for Larix aempferi plantation[J]. Sci Silv Sin,1997, 33(1):42-50.
    [12]李永慈,唐守正.用Mixed和Nlmixed过程建立混合生长模型[J].林业科学研究, 2004, 17(3):279-283.LI Yongci, TANG Shouzheng. Establishment of tree height growth model based on Mixed and Nlmixed of SAS[J].For Res, 2004, 17(3):279-283.
    [13]李春明.混合效应模型在森林生长模型中的应用[J].林业科学, 2009, 45(4):131-138.LI Chunming. Application of mixed effects models in forest growth model[J]. Sci Silv Sin, 2009, 45(4):131-138.
    [14]王明初,孙玉军.基于混合效应模型及EBLUP预测杉木树高生长过程[J].浙江农林大学学报, 2017, 34(5):782-790.WANG Mingchu, SUN Yujun. Based on mixed-effects model and empirical best linear unbiased predictor predicting growth profile of height for Chinese fir[J]. J Zhejiang A&F Univ, 2017, 34(5):782-790.
    [15]高慧淋,董利虎,李凤日.基于混合效应的人工落叶松树冠轮廓模型[J].林业科学, 2017, 53(3):84-93.GAO Huilin, DONG Lihu, LI Fengri. Crown shape model for Larix olgensis plantation based on mixed effect[J]. Sci Silv Sin, 2017, 53(3):84-89.
    [16]刘国华,傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报, 2001, 16(1):71-78.LIU Guohua, FU Bojie. Effects of global climate change on forest ecosystems[J]. J Nat Resour, 2001, 16(1):71-78.
    [17]高洪娜,高瑞馨.气象因子对树木生长量影响研究综述[J].森林工程, 2014, 30(2):6-9.GAO Hongna, GAO Ruixin. Review on the impacts of meteorological factors on the gymnosperms growth survey[J].For Eng, 2014, 30(2):6-9.
    [18]曹受金.南岭山地松科树种径向生长与气候因子关系及气候重建研究[D].长沙:中南林业科技大学, 2015.CAO Shoujin. The Study on the Response of Tree Ring Width of Pinaceae Tree Species to Climate Factors and Climate Reconstruction in Nanling Region[D]. Changsha:Central South University of Forestry and Technology, 2015.
    [19]梁诗博.杉木林分生长与环境交互过程可视化模拟研究[D].北京:中国林业科学研究院, 2011.LIANG Shibo. Visual Simulation Research on the Environment and Growth Interactive Process of Cunning hamia lanceolata Stand[D]. Beijing:Chinese Academy of Forestry, 2011.
    [20]胥辉.一种生物量模型构建的新方法[J].西北农林科技大学学报(自然科学版), 2001, 29(3):35-40.XU Hui. A new approach to the development of biomass model[J]. J Northwest Sci-Tech Univ Agric For Nat Sci Ed,2001, 29(3):35-40.
    [21]陆宗宇.在区域尺度上林龄、气候与森林地上生物量关系的研究[D].北京:华北电力大学, 2015.LU Zongyu. A Study on the Relationship Between Stand Age, Climate and Aboveground Biomass of Forests at Regional Scale[D]. Beijing:North China Electric Power University, 2015.
    [22]韦振锋,陈思源,黄毅. 1981-2010年陕西潜在蒸散量时空特征及其对气候因子的响应[J].地理科学,2015, 35(8):1033-1041.WEI Zhenfeng, CHEN Siyuan, HUANG Yi. Spatial and temporal characteristics of potential evaporation and climatic factors on the impact in Shaanxi Province in 1981-2010[J]. Sci Geogr Sin, 2015, 35(8):1033-1041.
    [23] ZHANG Xianliang, HE Xingyuan, LI Jinbao, et al. Temperature reconstruction(1750-2008)from Dahurian larch tree-rings in an area subject to permafrost in Inner Mongolia, Northeast China[J]. Climate Res, 2011, 47(3):151-159.
    [24]臧颢.区域尺度气候敏感的落叶松人工林林分生长模型[D].北京:中国林业科学研究院, 2016.ZANG Hao. Regional-scale Climate-sensitive Stand Growth Models for Larch Plantations[D]. Beijing:Chinese Academy of Forestry, 2016.
    [25]李兵兵.塞罕坝落叶松人工林与白桦次生林林分生长规律及其与地形因子关系研究[D].保定:河北农业大学, 2012.LI Bingbing. Studies on the Stand Growth Law and the Relationship with Topographical Factors in Larix principisrupprechtii Mayr. Artificial Forest and Betula platyphylla Suk. Secondary Forest of Saihanba[D]. Baoding:Hebei Agricultural University, 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700