高寒沙区吸湿凝结水凝结过程与温湿度的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between the Condensation Process of Hygroscopic and Condensate Water and the Air & Soil Humiture in Alpine Sandy Lands
  • 作者:成龙 ; 贾晓红 ; 吴波 ; 李元寿 ; 赵雪彬 ; 周虹
  • 英文作者:Cheng Long;Jia Xiaohong;Wu Bo;Li Yuanshou;Zhao Xuebin;Zhou Hong;Institute of Desertification Studies,Chinese Academy of Forestry;Chinese Academy of Meteorological Sciences;Qinghai Gonghe Desert Ecosystem Research Station,Chinese Academy of Forestry;
  • 关键词:高寒沙区 ; 吸湿凝结水 ; 空气温湿度 ; 土壤温湿度 ; 相关关系
  • 英文关键词:alpine sandy lands;;hygroscopic and condensate water;;air humiture;;soil humiture;;correlation
  • 中文刊名:ZGSS
  • 英文刊名:Journal of Desert Research
  • 机构:中国林业科学研究院荒漠化研究所;中国气象科学研究院;中国林业科学研究院青海共和荒漠生态系统国家定位观测研究站;
  • 出版日期:2018-12-13 14:14
  • 出版单位:中国沙漠
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划项目(2016YFC0500801);; 国家自然科学基金项目(41471096,41371093);; 中央级公益性科研院所基本科研业务费项目(CAFYBB2016ZD010)
  • 语种:中文;
  • 页:ZGSS201903010
  • 页数:10
  • CN:03
  • ISSN:62-1070/P
  • 分类号:79-88
摘要
吸湿凝结水作为干旱半干旱地区除降雨外主要的水分来源,具有十分重要的生态水文学意义。以青海共和盆地高寒沙区1997年植被恢复区生物土壤结皮吸湿凝结水为研究对象,2018年5—9月采用自制微渗仪观测吸湿凝结水量,同时观测近地层空气温湿度和土壤温湿度。结果表明:观测期间,不同类型结皮吸湿凝结水量存在差异,表现为苔藓结皮>藻类结皮>物理结皮>流沙,且差异性与观测时间无关;吸湿凝结水量与近地层空气湿度正相关,与近地层空气温度、土壤温度湿度负相关,且相关性与地表类型无关;吸湿水凝结过程主要受近地层空气温湿度的影响,累积贡献率85.294%;生长季吸湿凝结水主要产生时间为19:00至次日07:00,期间凝结速率呈波动性变化;19:00—23:00吸湿凝结水凝结速率不断上升,且上升趋势与近地层空气温湿度无关;00:00—03:00吸湿凝结水凝结速率出现滞后效应,滞后于近地层空气温湿度变化1 h;04:00—07:00呈先升高后降低趋势,04:00出现该时间段凝结速率最低值,05:00出现该时间段凝结速率的最高值。
        Expect for the rainfall, hygroscopic and condensate water as the main source of moisture in arid and semi-arid regions, has great significance for eco-hydrology. In this experiment, the contents of hygroscopic and condensate water in biological soil crusts in alpine sandy artificial vegetation restoration area of Gonghe basin were set as the research object. We used micro-lysimeters to observe hygroscopic and condensate water in alpine sandy lands from May to September in 2018, recorded the change rule of air humiture and soil humiture in the meantime. The results showed that hygroscopic and condensate water in different types of biological soil crust were different: moss crusts>algae crusts>physical crusts>sand, and the difference was not related to the date. The relationship between near-surface air humidity and the contents of hygroscopic and condensate water was positively correlated. And the relationship between near-surface air temperature, soil temperature, soil humidity and the contents of hygroscopic and condensate water was negative, and the correlation was not related to surface types. The main component analysis showed that the condensation process of hygroscopic and condensate water was mainly affected by near-surface air temperature and humidity, and the cumulative contribution rate was 85.294%. The main generation time of hygroscopic and condensate water in growing season was 19 o'clock to 7 o'clock the next day, during this period, the changes of condensation speed was volatile. The speed of hygroscopic and condensate water rose constantly at 19 o'clock to 23 o'clock, and the rising trend was unconnected with near-surface air temperature and humidity. At 0 o'clock to 3 o'clock, the speed of hygroscopic and condensate water appeared hysteretic effect, and it lagged one hour behind the change in atmospheric humiture. The tendency to go up and down at 4 o'clock to 7 o'clock, and the peak speed of hygroscopic and condensate water appeared at 5 o'clock, the lowest speed of hygroscopic and condensate water appeared at 4 o'clock.
引文
[1] Kidron G J.Analysis of dew precipitation in three habitats within a small arid drainage basin,Negev Highlands,Israel[J].Atmospheric Research,2000,55(3/4):257-270.
    [2] Agam N,Berliner P R.Dew formation and water vapor adsorption in semi-arid environments—A review[J].Journal of Arid Environments,2006,65(4):572-590.
    [3] Kidron G J.The effect of substrate properties,size,position,sheltering and shading on dew:An experimental approach in the Negev Desert[J].Atmospheric Research,2010,98(4):378-386.
    [4] 张晓影,李小雁,王卫,等.毛乌素沙地南缘凝结水观测实验分析[J].干旱气象,2008,26(3):8-13.
    [5] Glenn D M,Feldhake C,Takeda F,et al.The dew component of strawberry evapotranspiration[J].Hortscience,1996,31(6):947-950.
    [6] Makek E,McCurdy G,Giles B.Dew contribution to the annual water balances in semi-arid desert valleys[J].Journal of Arid Environments,1999,42(2):71-80.
    [7] Shachak M,Clive G J,Granot Y.Herbivory in rocks and the weathering of a desert[J].Science,1987,236(4805):1098-1099.
    [8] Li X Y.Effects of gravel and sand mulches on dew deposition in the semiarid region of China[J].Journal of Hydrology,2002,260(1):151-160.
    [9] 李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展,2009,24(1):11-24.
    [10] Lange O L,Kidron G,Büdel B,et al.Taxonomic Composition and Photosynthetic Characteristics of the `Biological Soil Crusts' Covering Sand Dunes in the Western Negev Desert[J].Functional Ecology,1992,6(5):519-527.
    [11] Tuba Z,Csintalan Z,Proctor M C F.Photosynthetic responses of a moss,Tortula ruralis,ssp.ruralis,and the lichens Cladonia convoluta and C.furcata to water deficit and short periods of desiccation,and their ecophysiological significance:a baseline study at present-day CO2 concentrati[J].New Phytologist,2010,133(2):353-361.
    [12] Csintalan Z,Takacs Z,Proctor M C F,et al.Early morning photosynthesis of the moss Tortula ruralis following summer dew fall in a Hungarian temperate dry sandy grassland[J].Plant Ecology,2000,151(1):51-54.
    [13] Richards K.Observation and simulation of dew in rural and urban environments[J].Progress in Physical Geography,2004,28(1):76-94.
    [14] Kidron D G J.A simple weighing method for dew and fog measurements[J].Weather,1998,53(12):428-433.
    [15] Agam N,Berliner P R.Diurnal water content changes in the bare soil of a coastal desert[J].Journal of Hydrometeorology,2003,5(5):922-933.
    [16] Shachak M,Leeper A,Degen A.Effect of population density on water influx and distribution in the desert snail Trochoidea seetzenii[J].?coscience,2002,9(3):287-292.
    [17] 王积强.关于“土壤凝结水”问题的探讨——与于庆和同志商榷[J].干旱区地理,1993(2):60-64.
    [18] 方静,丁永建.荒漠绿洲边缘不同粒径砂砾凝结水量[J].生态学杂志,2009,28(6):1102-1106.
    [19] 孙自永,余绍文,周爱国,等.新疆罗布泊地区凝结水试验[J].地质科技情报,2008,27(2):91-96.
    [20] 马金珠,张惠昌.腾格里沙漠包气带水,汽,热运动的耦合模型及水热状况模拟[J].中国沙漠,1998,18(4):340-345.
    [21] 陈荣毅,魏文寿,王敏仲,等.古尔班通古特沙漠地表土壤凝结水形成影响因素分析[J].沙漠与绿洲气象,2015(1):1-5.
    [22] 刘新平,何玉惠,赵学勇,等.科尔沁沙地不同生境土壤凝结水的试验研究[J].应用生态学报,2009,20(8):1918-1924.
    [23] 郭斌,陈亚宁,郝兴明,等.不同下垫面土壤凝结水特征及其影响因素[J].自然资源学报,2011(11):1963-1974.
    [24] 张静,张元明,周晓兵,等.生物结皮影响下沙漠土壤表面凝结水的形成与变化特征[J].生态学报,2009,29(12):6600-6608.
    [25] 陈荷生,康跃虎.沙坡头地区凝结水及其在生态环境中的意义[J].干旱区资源与环境,1992,6(2):63-72.
    [26] 周兴民,王质彬,杜庆.青海植被[M].西宁:青海人民出版社,1987:65-66.
    [27] 董光荣,高尚玉,金炯.青海省共和盆地土地荒漠化与防治途径[M].北京:科学出版社,1993.
    [28] Li F,Sun S.A preliminary research of landscape ecology application in desertification monitoring and assessment—a cases study[J].Acta Ecologica Sinica,2001:21.
    [29] 张勇勇,富利,赵文智,等.荒漠绿洲土壤优先流研究进展[J].中国沙漠,2017,37(6):1189-1195.
    [30] 王哲,梁煦枫,王德建,等.鄂尔多斯风沙滩地区土壤凝结水试验研究[J].地下水,2006,28(6):28-31.
    [31] 方静.干旱区荒漠绿洲边缘凝结水形成机理及其生态环境意义[D].兰州:中国科学院寒区旱区环境与工程研究所,2009.
    [32] 潘颜霞.沙坡头人工固沙过程中吸湿凝结水形成特征研究[D].兰州:中国科学院研究生院,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700