不同供氮方式下苹果矮化砧M9T337幼苗生长及内源激素的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth response of apple dwarfing rootstock M9T337 seedlings regulated by endogenous hormone under different nitrogen supply
  • 作者:彭玲 ; 于波 ; 陈倩 ; 葛顺峰 ; 姜远茂
  • 英文作者:PENG Ling;YU Bo;CHEN Qian;GE Shun-Feng;JIANG Yuan-Mao;State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University;
  • 关键词:苹果 ; 根系 ; 硝态氮 ; 内源激素 ; 基因表达
  • 英文关键词:apple;;roots;;NO_3~--N;;endogenous hormone;;gene expression
  • 中文刊名:ZWSL
  • 英文刊名:Plant Physiology Journal
  • 机构:作物生物学国家重点实验室山东农业大学园艺科学与工程学院;
  • 出版日期:2018-02-20
  • 出版单位:植物生理学报
  • 年:2018
  • 期:v.54;No.360
  • 基金:国家重点研发计划项目(2016YFD0201100);; 国家自然科学基金项目(31501713);; 国家现代农业产业技术体系建设资金项目(CARS-27);; 山东省自然科学基金项目(ZR2015PC001)~~
  • 语种:中文;
  • 页:ZWSL201802015
  • 页数:11
  • CN:02
  • ISSN:31-2055/Q
  • 分类号:128-138
摘要
以苹果(Malus domestica)矮化砧M9T337幼苗为试材,研究了5种不同供氮方式(NO_3~--N浓度由低变高、NO_3~--N浓度由高变低、持续适量供氮、持续低氮及持续高氮,分别以N1、N2、N3、N4和N5表示)对苹果幼苗生物量、根系形态、内源激素含量及根系硝态氮转运蛋白基因NRT1.1和NRT2.1相对表达量的影响。结果表明,与N3处理相比,N4处理根冠比增加了11.11%,而N5处理降低了28.57%。处理第21天,N3处理总根长、总表面积及根长密度最大,其次为N2处理,最小的为N5处理,而叶面积为N3>N5>N2>N1>N4。处理7 d后,N4处理根系吲哚乙酸(IAA)含量显著高于N5处理,而叶片IAA含量显著低于N5处理。N2处理在NO_3~--N浓度变换11 d内根系IAA含量增加了16.68%,叶片IAA含量降低了20.90%;N1处理趋势相反。处理21 d内,N5处理根系和叶片玉米素(Z)和玉米素核苷(ZR)含量均显著高于N4处理。各处理根系脱落酸(ABA)含量在处理第21天时无显著差异,而叶片ABA含量为N4>N2>N1>N5>N3。N4处理根系NRT1.1的相对表达量在处理7 d后显著高于N5处理,且N4处理1 d后显著诱导了根系NRT2.1的表达。由此推测,与高氮相比,低氮下苹果幼苗IAA从地上部向根系极性运输增加,Z和ZR含量降低,叶片ABA含量积累,根系NRT1.1和NRT2.1相对表达量提高,可能是苹果幼苗在不同NO_3~--N浓度下生长差异的重要原因。
        This experiment was carried out to study the effects of different nitrogen(NO_3~--N) supply on biomass, root morphology, endogenous hormone contents and NRT1.1 and NRT2.1 expression, using apple(Malus domestica) dwarfing rootstock M9T337 seedlings as experiment materials. Five methods for NO_3~--N supply were designed: NO_3~--N concentration varied from deficit to excess(N1), from excess to deficit(N2), keeping appropriate(N3), keeping deficiency(N4) and keeping excess(N5). Results showed that compared with the seedlings under N3 treatment, the ratio of root to shoot was 11.11% higher under N4 treatment and 28.57% lower under N5 treatment. The effect on root length, root surface area and root length density of seedlings was the most significant in N3 treatment, followed by N2 treatment, and least in N5 treatment on the 21 th day after treatment, and the leaf area displayed an order of N3>N5>N2>N1>N4. Indole-3-acetic acid(IAA) content was increased significantly in roots but decreased significantly in leaves under N4 treatment after 7 d compared with the seedlings under N5 treatment. Besides, IAA content increased by 16.68% in roots but decreased by 20.90% in leaves under N2 treatment within the 11 d after NO_3~--N concentration variation, while the opposite tendency was showed in N1 treatment. Zeatin(Z) and zeatin riboside(ZR) contents in roots and leaves under N5 treatment were significantly higher than those under N4 treatment within 21 d after treatment. There were no signifi-cant differences in abscisic acid(ABA) content in roots across the treatment, while ABA content in leaves displayed an order of N4>N2>N1>N5>N3 on the 21 th day after treatment. The relative expression level of NRT1.1 under N4 treatment was significantly higher than that under N5 treatment after 7 d, and the relative expression level of NRT2.1 was increased significantly under N4 treatment on the first day after treatment. It could, therefore, be concluded that compared with high NO_3~--N level, the polar transport of IAA from shoot to root, the decrease in Z+ZR content of roots and leaves, the increase in ABA content of leaves, thus the relative expression of NRT1.1 and NRT2.1 were promoted in the seedlings by nitrogen deficiency. These were important reasons for growth response of apple seedlings to different NO_3~--N levels.
引文
Alboresi A,Gestin C,Leydecker MT,et al(2005).Nitrate,a signal relieving seed dormancy in Arabidopsis.Plant Cell Environ,28:500-512
    Aloni R,Aloni E,Langhans M,et al(2006).Role of cytokinin and auxin in shaping root architecture:regulating vascular differentiation,lateral root initiation,root apical dominanc e and root gravitropism.Ann Bot,97(5):883-893
    Brewitz E,Larsson CM,Larsson M(1995).Influence of nitrogen supply on concentrations and translocation of abscisic acid in barley(Hordeum vulgare).Physiol Plant,95:499-506
    Caba JM,Centeno ML,Fernández B,et al(2000).Inoculation and nitrate alter phytohormone levels in soybean roots:differences between a supernodulating mutant and the wild type.Planta,211:98-104
    Ding N,Peng L,An X,et al(2016).Absorption,distribution and utilization of dwarf apple trees to 15N applied in different growth stages.Plant Nutr Fert Sci,22(2):572-578(in Chinese with English abstract)[丁宁,彭玲,安欣等(2016).不同时期施氮矮化苹果对15N的吸收、分配及利用.植物营养与肥料学报,22(2):572-578]
    Dong SF,Cheng LL,Scagel CF,et al(2004).Nitrogen mobilization,nitrogen uptake and growth of cuttings obtained from poplar stock plants grown in different Nregimes and sprayed with urea in autumn.Tree Physiol,24:355-359
    Forde BG(2002).The role of long-distance signaling in plant responses to nitrate and other nutrients.J Exp Bot,53(366):39-43
    Garcia MC,Lamattia L(2002).Nitric oxide and abscisic acid cross talk in guard cells.Plant Physiol,128(3):790-792
    Glass AD,Brito DT,Kaiser BN,et al(2001).Nitrogen transport in plants,with an emphasis on the regulation of fluxes to match plant demand.J Plant Nutr Soil Sci,164:199-207
    Guo YH,Yu YY,Wen LZ,et al(2017).Molecular basis of the effects of nitrate signal on root morphological structure changes of chrysanthemum.Sci Agric Sin,50(9):1684-1693(in Chinese with English abstract)[郭芸珲,于媛媛温立柱等(2017).硝态氮影响菊花根系形态结构变化的分子基础.中国农业科学,50(9):1684-1693]
    Jiang LL,Han LS,Han XR,et al(2011).Effects of nitrogen on growth,root morphological traits,nitrogen uptake and utilization efficiency of maize seedlings.Plant Nutr Fert Sci,17(1):247-253(in Chinese with English abstract)[姜琳琳,韩立思,韩晓日等(2011).氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响.植物营养与肥料学报,17(1):247-253]
    Li J,Jiang YM,Men YG,et al(2013).Effects of ammonium and nitrate nitrogen on growth and properties of 15Ndistribution of apple trees.Sci Agric Sin,46(8):3818-3825(in Chinese with English abstract)[李晶,姜远茂,门永阁等(2013).供应铵态和硝态氮对苹果幼树生长及15N利用特性的影响.中国农业科学,46(8):3818-3825]
    Li J,Jiang YM,Wei SC,et al(2015).Annual utilization and allocation of urea-13C by M.hupehensis Rehd.under different N rates.Plant Nutr Fert Sci,21(3):800-806(in Chinese with English abstract)[李晶,姜远茂,魏绍冲等(2015).不同施氮水平苹果矮化中间砧幼树光合产物的周年分配利用.植物营养与肥料学报,21(3):800-806]
    Li JY,Gong JM(2011).Nitrate signal sensing and transduction in higher plants.Plant Physiol J,47(2):111-118(in Chinese with English abstract)[李建勇,龚继明(2011).植物硝酸根信号感受与传导途径.植物生理学报,47(2):111-118]
    Liu JX,AnX,Cheng L,et al(2010).Auxin transport in maize roots in response to localized nitrate supply.Ann Bot,106:1019-1026
    Malamy JE(2005).Intrinsic and environmental response pathways that regulate root system architecture.Plant Cell Environ,28:67-77
    Mi GH,Chen FJ,Wu QP,et al(2010).Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping system.Sci China:Life Sci,53(12):1369-1373
    Nazoa P,Vidmar JJ,Tranbarger TJ,et al(2003).Regulation of the nitrat e transporter gene AtNRT2.1 in Arabidopsis thaliana:responses to nitrate,amino acids and developmental stage.Plant Mol Biol,52:689-703
    PavlíkováD,Neuberg M,ZIzKováE,et al(2012).Interactions between nitrogen nutrition and phytohormone levels in Festulolium plants.Plant Soil Environ,58(8):367-372
    Peng J,Peng FT,Wei SC,et al(2008).Effect of nitrogen forms on IPT3 expression and hormone contents of Pingyitiancha(Malus hupenensis Rehd.).Sci Agric Sin,41(11):3716-3721(in Chinese with English abstract)[彭静,彭福田,魏绍冲等(2008).氮素形态对平邑甜茶IPT3表达与内源激素含量的影响.中国农业科学,41(11):3716-3721]
    Remans T,Naciy P,Pervent M,et al(2006).A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis.Plant Physiol,140:909-921
    Rong N,Han YL,Rong XM,et al(2017).Response of NO3-uptake and distribution and nitrogen use efficiency in oilseed rape to limited nitrogen stress.Plant Nutr Fert Sci,23(4):1104-1111(in Chinese with English abstract)[荣楠,韩永亮,荣湘民等(2017).油菜NO 3-的吸收、分配及氮利用效率对低氮胁迫的响应.植物营养与肥料学报,23(4):1104-1111]
    Stenlid G(1982).Cytokinins as inhibitors of root gorwth.Physiol Plant,56:500-506
    Sun CW,Chu FJ,Yang LL,et al(2015).Effects of nitrogen fertilization on characteristics of distribution and utilization of 15N and 13C of Gala seedlings.Plant Nutr Fert Sci,21(2):431-438(in Chinese with English abstract)[孙聪伟,褚凤杰,杨丽丽等(2015).施氮量对嘎啦幼苗15N、13C分配利用特性影响.植物营养与肥料学报,21(2):431-438]
    Sun HW,Wang WL,Liu SJ,et al(2014).Formation on rice root regulation by nitrogen deficiency.Acta Pedol Sin,51(5):1096-1102(in Chinese with English abstract)[孙虎威,王文亮,刘尚俊等(2014).低氮胁迫下水稻根系的发生及生长素的响应.土壤学报,51(5):1096-1102]
    Suzuki A,Kuromori T,Shinozaki K,et al(2009).Regulation of NRT2.1 nitrate transporter by auxin response factor in Arabidopsis.The Proceedings of the International Plant Nutrition Colloquium XVI,2009,1134-1136
    Takei K,Sakakibara H,Taniguchi M,et al(2001).Nitrogendependent accumulation of cytokinins in root and the translocation to leaf implication of cytokinin species that induces gene express ion of maize response regulator.Plant Cell Physiol,42(1):85-93
    Tamaki V,Mercier H(2007).Cytokinins and auxin communicate nitrogen availability as long-distance signal molecules in pineapple(Ananas comosus).Plant Physiol,164(11):1543-1547
    Tian QY,Chen FJ,Liu JX,et al(2008).Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots.J Plant Physiol,165(9):942-951
    Walch-Liu P,Forde BG(2008).Nitrate signalling mediated by the NRTL1.1 nitrate transporter antagoni zes L-glutamateinduced changes in root architecture.Plant J,54(5):820-828
    Walch-Liu P,Ivanov I,Filleur S,et al(2006).Nitrogen regulation of root branching.Ann Bot,97:875-881
    Wang HN,Ge SF,Jiang YM,et al(2012).Growth characteristics and absorption,distribution and utilization of 15NO3--N and 15NH4+-N application for five apple rootstocks.Acta Hortic Sin,39(2):343-348(in Chinese with English abstract)[王海宁,葛顺峰,姜远茂等(2012).苹果砧木生长及吸收利用硝态氮和铵态氮特性比较.园艺学报,39(2):343-348]
    Xing GF,Feng WJ,Niu XL,et al(2015).Physiological mechanisms in phytohormone regulation of plant lateral root development.Plant Physiol J,51(12):2101-2108(in Chinese with English abstract)[邢国芳,冯万军,牛旭龙等(2015).植物激素调控侧根发育的生理机制.植物生理学报,51(12):2101-2108]
    Yu C,Zhang H,Li HL,et al(2012).The content of hormone and auxin transport gene pin1 of SH40 as the interstock of apple.J China Agric Univ,17(2):80-84(in Chinese with English abstract)[于迟,张鹤,李鸿莉等(2012).苹果矮化中间砧SH40激素含量及生长素转运蛋白基因pin1表达.中国农业大学学报,17(2):80-84]
    Zhang HM,Rong HL,Pilbeam D(2007).Signalling mechanisms und erlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana.J Exp Bot,58(9):2329-2338
    Zhang HQ,Zhang HM,Liang YS,et al(2016).Research progress of nitrate in plant transport mechanism.Plant Physiol J,52(2):141-149(in Chinese with English abstract)[张合琼,张汉马,梁永书等(2016).植物硝酸盐转运蛋白研究进展.植物生理学报,52(2):141-149]
    Zhang NG,Hasenstein KH(1999).Initiation and elongation of lateral roots in initiation and elongation of lateral roots in Lactuca sativa.Int J Plant Sci,160(3):511-519
    Zhao DY,Tuan QY,Li LH,et al(2007).Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays.Ann Bot,100:497-503
    Zhao ZP,Tong YA,Liu F,et al(2013).Effects of different long-term fertilization patterns on Fuji apple yield,quality,and soil fertility on Weibei Dryland,Shanxi Province of Northwest China.Chin J Appl Ecol,24(11):3091-3098(in Chinese with English abstract)[赵佐平,同延安,刘芬等(2013).长期不同施肥处理对苹果产量、品质及土壤肥力的影响.应用生态学报,24(11):3091-3098]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700