熔融锂液滴与冷却剂在不同温度下的相互作用实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study of Molten Lithium Droplet and Coolant Interaction at Different Temperatures
  • 作者:游曦鸣 ; 佟立丽 ; 曹学武
  • 英文作者:YOU Xi-ming;TONG Li-li;CAO Xue-wu;School of Mechanical Engineering,Shanghai Jiao Tong University;
  • 关键词:聚变 ; 液态锂 ; 冷却剂 ; 第一壁 ; 安全
  • 英文关键词:Fusion;;Liquid lithium;;Coolant;;First wall;;Safety
  • 中文刊名:HKXY
  • 英文刊名:Nuclear Science and Engineering
  • 机构:上海交通大学机械与动力工程学院;
  • 出版日期:2017-06-15
  • 出版单位:核科学与工程
  • 年:2017
  • 期:v.37;No.145
  • 基金:国家自然科学基金资助项目(No.11375116);; 国家磁约束核聚变能发展研究专项(No.2013GB114005)
  • 语种:中文;
  • 页:HKXY201703006
  • 页数:6
  • CN:03
  • ISSN:11-1861/TL
  • 分类号:36-41
摘要
针对未来聚变装置中严重事故时可能发生的液态锂与冷却剂相互作用及爆炸过程,建立实验装置并在其上开展了熔融锂液滴与冷却剂相互作用实验研究。观测了不同初始温度下锂液滴与冷却剂相互作用的爆炸过程,对不同工况下的峰值压力进行了比较,并分析了熔融锂液滴初始温度和冷却剂初始温度对爆炸作用的影响。研究结果表明,熔融锂液滴与冷却剂接触面积的显著增大是产生压力峰值的关键因素,当熔融锂液滴温度超过300℃,冷却剂温度超过50℃时,熔融锂液滴与冷却剂相互作用爆炸强度明显增大;但是当冷却剂温度超过70℃时,爆炸反应反而受到了抑制。同时,在评估熔融锂液滴与冷却剂相互作用风险时,蒸汽爆炸作用的影响不可忽视。
        In order to make a better understanding of the complicated liquid lithium water interaction and lithium-water explosion during the severe accident of the future fusion devices,an experiment facility was set up and an experiment of molten lithium droplet and coolant interaction was conducted.The process of explosion for molten lithium droplet coolant interaction at different temperatures were observed and measured.The peak pressures at different conditions were compared and the influences of initial lithium droplet temperature and initial coolant temperature were analyzed.The experimental results show that the dramatic increase of reaction area between lithium droplet and water is a key factor for the pressure peaks.More explosive reaction occurs when the lithium droplet temperature is above 300 ℃ and water temperature is above 50 ℃.But the explosion is suppressed when the initial water temperature is above 70 ℃.A phenomenon called steam explosion was observed in the experiment and it is not ignorable in the risk assessment of liquid lithium water interaction.
引文
[1]M.L.Apicella,V.Lazarev,I.Lyublinski,et al.Lithium capillary porous system behavior as PFM in FTU tokamak experiments[J].Journal of Nuclear Materials,2009,386-388:821-823.
    [2]V.Surla,M.A.Jaworski,T.K.Gray,et al.Lithium research as plasma facing component material at the University of Illinois[J].Thin Solid Films,2010,518(22):6663-6666.
    [3]左桂忠,胡建生,罗南昌,等.HT-7托卡马克中锂第一壁研究的先行试验[J].真空科学与技术学报,2010,30(3):273-277.
    [4]Lili Tong,Yabing Li,Jianming Yu,et al.Preliminary Analysis of In-Vessel First Wall Cooling Pipe Ruptures for ITER[J].Journal of Fusion Energy,2015,34:29-35.
    [5]H.Kottowski,O.Kranert,C.Savatteri,et al.Studies with respect to the estimation of liquid metal blanket safety[J].Fusion Engineering and Design,1991,14(3-4):445-458.
    [6]Ximing You,Lili Tong,Xuewu Cao.The Design of Experiment Equipment for Liquid Lithium Water Interaction[C].Prague:22nd International Conference on Nuclear Engineering,2014.
    [7]林千,佟立丽,曹学武,等.熔融金属液滴热细粒化过程研究[J].原子能科学技术,2009,43(7):604-608.
    [8]O.Kranert,H.Kottowski,Small scale lithium-lead/water-interaction studies[J].Fusion Engineering and Design,1991,15(2):137-154.
    [9]I.E.Lyublinski,A.V.Vertkov,V.A.Evtikhin.Application of lithium in systems of fusion reactors.2.The issues of practical use of lithium in experimental facilities and fusion devices[J].Plasma Devices and Operations,2009,17(4):265-285.
    [10]S Lomperski,M.L Corradini.Lithium/water interactions:experiments and analysis[J].Fusion Technology,1993,24:5-16.
    [11]D.H.Cho,D.R.Armstrong,R.P.Anderson.Combined vapor and chemical explosions of metal and water[J].Nuclear Engineering and Design,1995,155(1-2):405-412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700