AlSi10Mg粉末激光选区熔化残余应力场数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of selective laser melting residual stress field of AlSi10Mg powder
  • 作者:杜洋 ; 乔凤斌 ; 郭立杰 ; 马晓华 ; 游欣
  • 英文作者:DU Yang;QIAO Fengbin;GUO Lijie;MA Xiaohua;YOU Xinyu;Kerui Institute of Industrial Research,Shanghai Aerospace Equipments Manufacturer Co.,Ltd.;School of Mechanical Engineering,Shanghai University of Technology;
  • 关键词:激光选区熔化 ; 有限元 ; 残余应力场 ; 工艺参数
  • 英文关键词:shaped composite steel shear wall;;craftsmanship;;deformation control;;correction
  • 中文刊名:DHJI
  • 英文刊名:Electric Welding Machine
  • 机构:上海航天设备制造总厂有限公司科瑞工业研究所;上海理工大学机械工程学院;
  • 出版日期:2019-01-20
  • 出版单位:电焊机
  • 年:2019
  • 期:v.49;No.380
  • 语种:中文;
  • 页:DHJI201901021
  • 页数:7
  • CN:01
  • ISSN:51-1278/TM
  • 分类号:113-119
摘要
使用有限元法对AlSi10Mg激光选区熔化残余应力场进行模拟。建立有限元传热模型,将激光热源视为三维高斯体热源,实现在粉床上的移动加载,分别从材料的粉末态与实体态两种单元属性出发,考虑热物性参数和激光能量吸收率随温度变化的特性,进行间接热-应力耦合分析,重点研究激光功率、扫描速度及基板预热温度对残余应力场的影响规律。结果表明:残余应力最大值出现在基板与粉床接触位置,且y向残余应力(平行扫描方向)大于x向残余应力(垂直扫描方向);Von Mises等效应力和y向残余应力随激光功率的增大逐渐增大;随扫描速度的增大逐渐减小;随基板预热温度的升高逐渐降低。
        The finite element method is used to simulate the selective laser melting residual stress field of Al Si10 Mg powder. The finite element heat transfer model is established,and the laser heat source is regarded as a three-dimensional Gaussian heat source to realize the moving load on the powder bed. Considering the characteristic of the thermophysical parameters and laser energy absorption rate varying with temperature from the two types of material element properties of powder state and solid state. The indirect thermal-stress coupling analysis is carried out and the influence of laser power,scanning speed and preheating temperature of the substrate on the residual stress field is studied. The results show that the maximum residual stress appears in the contact position between base plate and powder bed,and the y-direction residual stress(parallel scanning direction)is larger than the x-direction residual stress(vertical scanning direction);the Von Mises equivalent stress and the y-direction residual stress gradually increase as the laser power rise,but they gradually decrease as the scanning speed and the preheating temperature of base plate improve.
引文
[1] AHMA DI A,MOGHADDAM N S,ELAHINIA M,et al.Finite Element Modeling of Selective Laser Melting 316L Stainless Steel Parts for Evaluating the Mechanical Properties[C]. ASME:2016,International Manufacturing Science and Engineering Conference,2016:V002T01A003.
    [2]陶攀,李怀学,许庆彦.激光选区熔化工艺过程数值模拟的国内外研究现状[J].铸造,2017,66(7):695-701.
    [3] Mercelis P,Kruth J. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal,2006,12(5):254-265.
    [4] Parry L,Ashcroft I A,Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing,2016(12):1-15.
    [5] Fateri M,Hotter J S,Gebhardt A. Experimental and Theoretical Investigation of Buckling Deformation of Fabricated Objects by Selective Laser Melting[J]. PhysicsProcedia,2012,39(5):464-470.
    [6] Cheng B,Shrestha S,Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J].Additive Manufacturing,2016(12):240-251.
    [7]成雅徽. GH4169合金粉末激光选区熔化成形数值模拟及试验研究[D].山西:中北大学,2016.
    [8] CARSLAW H S,JAEGER J C. Conductionof Heat in Solids[M]. Oxford:Clarendon Press,1959.
    [9]李俊昌.激光的衍射及热作用计算[M].北京:科学出版社,2002.
    [10] XIE J,KAR A,ROTHENFLUE J A,etal.Temperaturedependent absorptivity and cutting capability of CO2,Nd:YAG and chemical oxygen iodine lasers[J]. Journal of Laser Applications,1997,9(2):77-85.
    [11] ANG L K,Lau Y Y,GILGENBACH R M,et al. Analysis of laser absorption on a rough metal surface[J]. Applied Physics Letters 1997,70(6):696-698.
    [12] STACY S C,XIN Z,PANTOYA M. The effects of density on thermal conductivity and absorption coefficient for consolidated aluminum nanoparticles[J]. InternationalJournalof Heat&Mass Transfer,2014,73(3):595-599.
    [13] KOLOSSOV S,BOILLAT E,GLARDON R,et al. 3D FE simulation for temperature evolution in the selective laser sintering process[J]. International Journal of Machine Tools&Manufacture,2004,44(2):117-123.
    [14]殷杰.激光微烧结金属粉末的温度场和应力场的数值模拟研究[D].湖北:华中科技大学,2014.
    [15]胡仁喜,康士廷. ANSYS 15.0热力学有限元分析从入门到精通[M].北京:机械工业出版社,2016.
    [16] TOULOUKIAN Y S,BUYCO E H. Thermophysical properties of matter:Thermal conductivity,metallic elements and alloys[M]. New York:Plenum,1970.
    [17] TOULOUKIAN Y S,BUYCO E H. Thermophysical properties of matter:Specific heat,metallic elements and alloy[M].New York:Plenum,1970.
    [18] TAYLOR C M. Direct laser sintering of stainless steel:thermal experiments and numerical modelling[D]. UK:University of leeds,2004.
    [19]时海芳,任鑫.材料力学性能[M].北京:北京大学出版社,2015.
    [20] ROBERTS,ASEIBICHIN I. Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing[D].Wolverhampton:University of Wolverhampton,2012.
    [21] DONG P,HONG J K,BOUCHARD P J. Analysis of residual stresses at weld repairs[J]. International Journal of Pressure Vessels&Piping,2005,82(4):258-269.
    [22] LIU Y,YANG Y,WANG D. A study on the residual stress during selective laser melting(SLM)of metallic powder[J]. International Journal of Advanced Manufacturing Technology,2016,87(1-4):1-10.
    [23]文舒,董安平,陆燕玲,等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J].金属学报,2018,54(3):393-403.
    [24]苏荣华,刘伟军,龙日升.不同基板预热温度对激光金属沉积成形过程热应力影响的研究[J].制造技术与机床,2009,59(4):78-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700