带肋通道中烟气细颗粒物团聚情况的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of aggregation of fine particles in ribbed channel
  • 作者:贾桂鹏 ; 杨历 ; 陈占秀 ; 刘志勇 ; 李阳
  • 英文作者:JIA Guipeng;YANG Li;CHEN Zhanxiu;LIU Zhiyong;LI Yang;School of Energy and Environmental Engineering,Hebei University of Technology;
  • 关键词:细颗粒 ; 湍流聚并 ; 带肋通道 ; 颗粒群平衡 ; 湍流耗散
  • 英文关键词:fine particles;;turbulence aggregation;;ribbed channel;;population balance modeling;;turbulence dissipation rate
  • 中文刊名:HBGB
  • 英文刊名:Journal of Hebei University of Technology
  • 机构:河北工业大学能源与环境工程学院;
  • 出版日期:2018-04-15
  • 出版单位:河北工业大学学报
  • 年:2018
  • 期:v.47;No.202
  • 基金:河北省高等学校科学技术研究项目(ZD2015128,ZD2016163);; 河北工业大学能环学院动力工程领域专业学位研究生创新项目
  • 语种:中文;
  • 页:HBGB201802008
  • 页数:6
  • CN:02
  • ISSN:13-1208/T
  • 分类号:47-52
摘要
通过数值模拟研究含有扰流柱带肋通道的细颗粒预处理装置的湍流团聚特性,分别考虑了不同初始颗粒粒径,不同入口颗粒体积分数和不同入口流速情况下对颗粒湍流团聚的影响.计算采用k-ε耦合颗粒群平衡模型(PBM),结果表明在本文讨论的初始粒径范围内,初始粒径越大颗粒团聚效果越好;对于不同入口体积分数工况下,发现体积分数越大团聚效果越好;而由于速度工况中速度与流场中湍流耗散率成正比,所以可以发现速度越大湍流耗散率越大从而导致团聚效果越好.
        A bstract The turbulence aggregation of fine particle pretreatment device with ribbed channel is studied through numerical simulation. The effects of different original particle size, volume fraction of different introduced particles and different inlet flow rates on turbulence aggregation were discussed respectively. The k-ε coupled particle swarm model(PBM) was adopted. The results show that in the initial particle size range discussed, if the initial particle size becomes larger,the aggregation effect will be better; In the case of different inlet volume fraction, it is found that if the volume fraction is larger. the aggregation effect will be better; and the velocity is proportional to the turbulence dissipation rate in the flow field. So we can see that the greater the velocity, the better aggregation effect the greater the turbulence dissipation rate leads to.
引文
[1]郭新彪,魏红英.大气PM2.5对健康影响的研究进展[J].科学通报,2013(13):1171-1177.
    [2]张延君,郑玫,蔡靖,等.PM2.5源解析方法的比较与评述[J].科学通报,2015(2):109-121.
    [3]朱增银,李冰,赵秋月,等.对国内外PM2.5研究及控制对策的回顾与展望[J].环境科技,2013,26(1):70-74.
    [4]刘含笑,郦建国,姚宇平,等.PM2.5湍流聚并方法研究进展[J].中国环保产业,2013(4):27-30.
    [5]Kim D S,Hong S B,Kim Y J,et al.Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence[J].Journal of Aerosol Science,2006,37(12):1781-1787.
    [6]Yagmur S,Dogan S,Aksoy M H,et al.Comparison of flow characteristics around an equilateral triangular cylinder via PIV and Large Eddy Simulation methods[J].Flow Measurement&Instrumentation,2017.
    [7]樊建人,胡桂林,姚军,等.气固两相圆柱绕流的直接数值模拟[J].工程热物理学报,2003,24(3):433-436.
    [8]陈亚伟,熊扬恒,周建龙,等.凝并元件结构优化对气固两相流流场及颗粒凝并效果的影响[J].热力发电,2016,45(1):60-64.
    [9]刘忠,刘含笑,冯新新,等.超细颗粒物聚并模型的比较研究[J].燃烧科学与技术,2012,18(3):212-216.
    [10]刘含笑,郦建国,姚宇平,等.扰流柱不同排列方式对凝聚器扰流区流场的影响[C]//中国科协年会,2013.
    [11]刘含笑.燃煤超细颗粒物涡聚并数值模拟[D].北京:华北电力大学,2012.
    [12]张伟,戴玉满.低雷诺数下等边布置三方柱绕流的数值研究[J].机械工程学报,2015,51(12):185-191.
    [13]章鹏飞,米建春,潘祖明.装置元件排列间距和颗粒浓度对细颗粒湍流聚并的影响[J].中国电机工程学报,2016,36(6):1625-1632.
    [14]王顺斌,张丽,赵曙,et al.旋转状态下S型带肋通道流动特性数值研究[J].航空动力学报,2015,30(7):1583-1591.
    [15]Higashitani K,Yamauchi K,Matsuno Y,et al.Turbulent coagulation of particles dispersed in a viscous fluid[J].Journal of Chemical Engineering of Japan,1983,16(4):299-304.
    [16]Piskunov V N,Golubev A I The generalized approximation method for modeling coagulation kineties-part1:justifieation and implementation of the method[J].Journal of Aerosol Sienee,2002,33(l):51-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700