湘西花垣地区铅锌矿床C、H、O同位素特征及其对成矿流体来源的指示
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon, hydrogen and oxygen isotopes of the Huayuan Pb-Zn ore deposit in western Hu'nan Province and their implications for the source of ore-forming fluid
  • 作者:周云 ; 段其发 ; 唐菊兴 ; 曹亮 ; 彭三国 ; 甘金木
  • 英文作者:ZHOU Yun;DUAN Qifa;TANG Juxing;CAO Liang;PENG Sanguo;GAN Jinmu;Wuhan Center of Geological Survey, CGS;College of Earth Science, Chengdu University of Technology;Institute of Mineral Resources, Chinese Academy of Geological Sciences;
  • 关键词:C、H、O同位素 ; 成矿流体 ; 铅锌矿 ; 湘西花垣
  • 英文关键词:C,H,O isotope;;ore-forming fluid;;lead-zinc deposits;;Huayuan in western Hu'nan Province
  • 中文刊名:ZQYD
  • 英文刊名:Geological Bulletin of China
  • 机构:中国地质调查局武汉地质调查中心;成都理工大学地球科学学院;中国地质科学院矿产资源研究所;
  • 出版日期:2017-05-15
  • 出版单位:地质通报
  • 年:2017
  • 期:v.36;No.264
  • 基金:国家自然科学基金项目《西藏雄村斑岩型Cu-Au矿集区Ⅰ号矿体富CH4成矿流体演化过程研究》(批准号:41502079)、西藏尼雄矽卡岩铁矿成矿流体演化与成矿作用机制》(批准号:41503040);; 中国地质调查局项目《湘西-鄂西成矿带神农架—花垣地区地质矿产调查》(编号:DD20160029)、《湘西-鄂西成矿带资源远景调查评价》(编号:12120114008001)
  • 语种:中文;
  • 页:ZQYD201705014
  • 页数:11
  • CN:05
  • ISSN:11-4648/P
  • 分类号:135-145
摘要
湘西花垣地区铅锌矿床是铅锌矿资源储量超过千万吨的世界级超大型矿床之一。对该矿床主矿化期的方解石和闪锌矿进行了系统的C、H、O同位素研究。分析结果显示,花垣地区铅锌矿床主成矿期方解石样品的δ~(13)C_(PDB)值范围为-2.71‰~1.21‰,δ~(18)OSMOW值范围为16.09‰~22.48‰,团结、李梅、土地坪、蜂塘和大石沟各铅锌矿床中主成矿期方解石的13C、18O同位素依次表现出逐渐降低的特征,在δ~(18)O_(SMOW)-δ~(13)C_(PDB)图上主要介于原生碳酸盐岩与海相碳酸盐岩之间,该地区铅锌矿床成矿流体中的碳主要来源于海相碳酸盐岩的溶解作用。花垣矿区围岩的δ~(13)C_(PDB)值范围为0.15‰~1.17‰,δ~(18)O_(SMOW)值范围为19.79‰~23.89‰,指示沉积成因海相碳酸盐岩的特征。方解石和闪锌矿样品中流体的δD_(SMOW)变化于-91.1‰~-15‰之间,δ18Ofluid变化范围为-4.1‰~9.25‰,在矿区范围内流体的迁移方向是由北向南,δ~(18)O_(fluid)-δD_(SMOW)图显示,矿床成矿流体的主要来源是建造水和大气降水。成矿流体与围岩间的水-岩反应是导致湘西花垣地区铅锌矿床中方解石和闪锌矿矿物发生沉淀的主要机制。
        With more than ten million tons of lead and zinc resource reserves, the Huayuan lead-zinc deposit is expected to become the largest Pb-Zn deposit in China and one of the world-class superlarge ore deposits. In this paper, researches on carbon, hydrogen,oxygen isotope of calcite and sphalerite from the Huayuan lead-zinc deposit formed during the main mineralization period are reported. The analytical results show that δ~(13)C_(PDB) values of calcite samples display the range from 2.71‰ to 1.21‰, the δ~(18)O_(SMOW) values are in the range from 16.09‰ to 22.48‰. The δ~(13)C_(PDB) and δ~(18)O_(SMOW) isotope values of calcite minerals from the Tuanjie, Limei,Tudiping, Fengtang and Dashigou lead-zinc deposits are gradually reduced in turn, falling between native carbonate rock and marine carbonate in the δ~(18)O_(SMOW)-δ~(13)C_(PDB) diagram. In the Huayuan lead-zinc deposit, the carbon in the ore-forming fluid was mainly de-rived from marine carbonate dissolution. The δ~(13)C_(PDB) values of surrounding rocks in the Huayuan lead-zinc deposit vary from0.15‰ to 1.17‰, the δ~(18)O_(SMOW) values vary from 19.79‰ to 23.89‰, and the surrounding rock is sedimentary marine carbonate. TheδDSMOWvalues of fluid in calcite and sphalerite vary from 91.1‰ to 15‰, the δ~(18)O_(fluid )vary from-4.1‰ to 9.25‰, and the migration direction of fluid in the ore district was from north to south. The δ~(18)O_(fluid)-δD_(SMOW) diagram shows that the main source of oreforming fluid was formation water and atmospheric precipitation. Water-rock reaction between ore-forming fluid and wall rock was the main mechanism leading to the precipitation and crystallization of calcite and sphalerite in the Huayuan Pb-Zn deposit of western Hu'nan Province.
引文
[1]周云,段其发,唐菊兴,等.湘西地区铅锌矿的大范围低温流体成矿作用——流体包裹体研究[J].地质与勘探,2014,50(3):515-532.
    [2]刘文周,徐新煌.论滇川黔铅锌成矿带矿床与构造的关系[J].成都理工学院学报,1996,23(l):71-77.
    [3]芮宗瑶,叶锦华,张立生,等.扬子克拉通周边及其隆起边缘的铅锌矿床[J].中国地质,2004,31(4):337-346.
    [4]张长青,毛景文,吴锁平,等.川滇黔地区MVT铅锌矿床分布、特征及成因[J].矿床地质,2005,24(3):317-324.
    [5]王奖臻,李朝阳,李泽琴,等.川滇黔地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学,2001,29(2):41-45.
    [6]王奖臻,李朝阳,李泽琴,等.川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比[J].矿物岩石地球化学通报,2002,21(2):127-132.
    [7]汤朝阳,邓峰,李堃,等.湘西—黔东地区寒武系都匀阶清虚洞期岩相古地理与铅锌成矿关系研究[J].地质与勘探,2013,49(l):19-27.
    [8]曾勇,李成君.湘西董家河铅锌矿地质特征及成矿物质来源探讨[J].华南地质与矿产,2007,23(3):24-30.
    [9]林方成.扬子地台西缘大渡河谷超大型层状铅锌矿床地质地球化学特征及成因[J].地质学报,2005,79(4):540-556.
    [10]刘文均,郑荣才.花垣铅锌矿床成矿流体特征及动态[J].矿床地质,2000,19(2):173-181.
    [11]杨绍祥,劳可通.湘西北铅锌矿床的地质特征及找矿标志[J].地质通报,2007,26(7):899-908.
    [12]周家喜,黄智龙,周国富,等.黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学[J].大地构造与成矿学,2012,36(1):93-101.
    [13]毛德明.贵州赫章天桥铅锌矿床围岩的氧-碳同位素研究[J].贵州工业大学学报(自然科学版),2000,29(2):8-11.
    [14]黄智龙,陈进,韩润生,等.云南会泽超大型铅锌矿床地球化学及成因——兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社,2004:28-58.
    [15]黄智龙,李文博,陈进,等.云南会泽超大型铅锌矿床C、O同位素地球化学[J].大地构造与成矿学,2004,28(1):53-59.
    [16]Spangenberg J,Fontbote L,Sharp Z D.Carbon and oxygen isotope study of hydrothermal carbonates in the zinc lead deposits of the San Vicente district,central Peru:a quantitative modeling on mixing processes and CO2degassing[J].Chemical Geology,1996,133(1/4):289-315.
    [17]Huang Z L,Li W B,Chen J,et al.Carbon and oxygen isotope constraints on mantle fluid involvement in the mineralization of the Huize super-large Pb-Zn deposits,Yunnan Province,China[J].Journal of Geochemical Exploration,2003,78/79:637-642.
    [18]Huang Z L,Li W B,Zhou MF,et al.REE and C-O isotopic geochemistry of calcites from the world-class Huize Pb-Zn deposits,Yunnan,China:Implications for the ore genesis[J].Acta Geologica Sinica,2010,84(3):597-613.
    [19]黄思静.碳酸盐岩的成岩作用[M].北京:地质出版社,2000:1-288.
    [20]夏新阶,舒见闻.李梅锌矿床地质特征及其成因[J].大地构造与成矿学,1995,19(3):197-204.
    [21]杨绍祥,劳可通.湘西北铅锌矿床碳氢氧同位素特征及成矿环境分析[J].矿床地质,2007,26(3):330-340.
    [22]蔡应雄,杨红梅,段瑞春,等.湘西-黔东下寒武统铅锌矿床流体包裹体和硫、铅、碳同位素地球化学特征[J].现代地质,2014,28(1):29-41.
    [23]李堃,吴昌雄,汤朝阳,等.湘西黔东地区铅锌矿床C、O同位素地球化学特征及其对成矿过程的指示[J].中国地质,2014,41(5):1608-1619.
    [24]钟九思,毛昌明.湘西北密西西比河谷型铅锌矿床特征及成矿机制探讨[J].国土资源导刊,2007,4(6):52-56.
    [25]段其发,曹亮,曾健康,等.湘西花垣矿集区狮子山铅锌矿床闪锌矿Rb-Sr定年及地质意义[J].地球科学-中国地质大学学报,2014,39(8):977-999.
    [26]Friedman I,O'Neil J R.Compilation of Stable Isotope Fractionation Factors of Geochemical[M].Washington:United States Government Printing Office,1977:1-12.
    [27]Hoefs J.Stable isotope geochemistry[M].Berlin:Spring Verlag,1997:65-168.
    [28]刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质,2004,23(1):1-10.
    [29]O'Neil J R,Clayton R N,Mayeda T K.Oxygen isotope fractionation in divalent metal carbonates[J].The Journal of Chemical Physics,1969,51(12):5547-5558.
    [30]路远发.Geo Kit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464.
    [31]王林均,包广萍,崔银亮,等.黔西北典型铅锌矿床碳-氧同位素地球化学研究[J].矿物学报,2013,33(4):709-712.
    [32]郑永飞.稳定同位素体系理论模型及其矿床地球化学应用[J].矿床地质,2001,20(1):57-70.
    [33]Zheng Y F.Carbon-oxygen isotopic covariations in hydrothermal calcite during degassing of CO2:A quantitative evaluation and application to the Kushikino gold mining area in Japan[J].Mineralium Deposita,1990,25:246-250.
    [34]Zheng Y F,Hoefs J.Carbon and oxygen isotopic covariations in hydrothermal calcites[J].Mineralium Deposita,1993,28:79-89.
    [35]Appold M S,Garven G.The hydrology of ore formation in the Southeast Missouri district:numerical models of topography-driven fluid flow during the Ouachit a orogen[J].Economic Geology,1999,94:913-936.
    [36]Leach D L,Sangster D F.Mississippi Valley-type lead-zinc deposits[C]//Kirkham R V,Sinclair W D,Thorpe R I.Mineral Deposit Modeling.Geological Association of Canada.Spec.Papers.,1993,40:289-314.
    [37]Leach D L,Bradley D C,Lewchuk M,et al.Mississippi Valleytype lead-zinc deposits through geological time:implications from recent age-dating research[J].Mineralium Deposita,2001,36:711-740.
    [38]Leach D L,S angster D F,Kelley K D,et al.Sedement-hosted lead-zinc deposits:A global perspective[C]//Hedenquist J W,Thompson J F H,Goldfarb R J,et al.Economic Geology 100th Anniversary Volume,2005:561-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700