河流底泥潜在硝化速率模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of Potential Nitrification Rate Model of the River Sediments
  • 作者:王超 ; 贾海燕 ; 汪涛 ; 徐建锋 ; 夏伟
  • 英文作者:WANG Chao;JIA Haiyan;WANG Tao;XU Jianfeng;XIA Wei;Changjiang Water Resources Protection Institute;College of Resources and Environment,Huazhong Agricultural University;Three Gorges University,College of Water Conservancy and Environment;
  • 关键词:生物量 ; 温度 ; 河流底泥 ; 潜在硝化速率 ; 模型
  • 英文关键词:biomass;;temperature;;river sediment;;potential nitrification rate;;model
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:长江水资源保护科学研究所;华中农业大学资源与环境学院;三峡大学水利与环境学院;
  • 出版日期:2018-11-20 16:44
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.256
  • 基金:水利部技术示范项目(No.SF-201708);; 国家重点研发计划项目(No.2017YFC050530202);; 国家水体污染控制与治理科技重大专项(No.2017ZX07108-001)~~
  • 语种:中文;
  • 页:HJKX201905020
  • 页数:6
  • CN:05
  • ISSN:11-1827/X
  • 分类号:170-175
摘要
为深入认识河流NH_4~+-N的转化降解过程,以生物量、温度和c(NH_4~+-N)这3项因子为对象,开展河流底泥潜在硝化速率模型研究.采集典型污染河流底泥样品,设置3个生物量梯度(高、中、低)、5个c(NH_4~+-N)梯度(0. 13、0. 63、1. 13、2. 13、4. 13mmol/L)、4个温度梯度(15、20、30、40℃),测定不同条件下河流底泥潜在硝化速率,并进一步构建了潜在硝化速率模型,定量分析了生物量、温度和c(NH_4~+-N)对潜在硝化速率的影响.结果表明:①生物量对底泥的潜在硝化速率有显著影响,高、中、低生物量条件下,河流底泥潜在硝化速率范围分别为0. 10~0. 26、0. 03~0. 16和0. 02~0. 07μmol/h.②底泥潜在硝化速率随温度呈现指数增长,但高温具有抑制作用,各温度梯度下k (硝化速率常数)分别为5. 9、9. 3、18. 1、10. 6μmol/(g·h),15~30℃范围内θ(温度校正系数)为1. 074.③c(NH_4~+-N)对潜在硝化速率的限制作用符合Monod方程,高、中、低生物量条件下Ks(半饱和浓度)的平均值分别为0. 02、0. 05、0. 13 mmol/L.研究显示,潜在硝化速率模型较好反映了生物量、温度和c(NH_4~+-N)对河流底泥潜在硝化速率的影响,为定量认识底泥硝化能力提供了有效手段.
        In order to understand the transformation and degradation process of NH4+-N in rivers,the influence of biomass,temperature and c(NH4+-N) on the potential nitrification rate were studied quantitatively through potential nitrification rate model of the river sediment. Sediment samples from typical polluted rivers were collected. Three biomass gradients(high,medium,low),5 c(NH4+-N)gradients(0. 13,0. 63,1. 13,2. 13,4. 13 mmol/L) and 4 temperature gradients(15,20,30,40 ℃) were set,and the potential nitrification rates were determined. The potential nitrification rate model was established,and the effects of biomass,temperature and c(NH4+-N) on nitrification rate were quantitatively analyzed. The results showed that:(1) under the conditions of high,medium and low biomass,the potential nitrification rate ranged from 0. 10 to 0. 26 μmol/h,from 0. 03 to 0. 16 μmol/h and from 0. 02 to 0. 07 μmol/h respectively.(2) The potential nitrification rate of sediment increased exponentially with temperature. However,high temperature shows obvious inhibition effect. The nitrification rate constant k was 5. 9,9. 3,18. 1 and 10. 6 μmol/(g·h) at 15,20,30 and 40 ℃respectively,and the temperature correction factor θ was 1. 074 at the range of 15 to 30 ℃.(3) The limiting effect of c(NH4+-N) on nitrification rate conformed to the Monod equation. The half-saturation concentration Kswas 0. 02,0. 05 and 0. 13 mmol/L under high,medium and low biomass respectively. The research suggested that the potential nitrification rate model can well reflect the influence of biomass,temperature and c(NH4+-N) on the potential nitrification rate of river sediment,and can provide an effective means for quantification of nitrification capacity of sediments.
引文
[1] HENRIKSE K,KEMP W. Nitrification in estuarine and coastal marine sediments[C]//BLACKBURN T H,SORENSEN J.Nitrogen cycling in coastal marine environments. New Jersey:John Wiley&Sons,1988:207-249.
    [2] PROSSER J. Autotrophic nitrification in bacteria[J]. Advances in Microbial Physiology,1990,30:125-181.
    [3] DITORO D M,FITZPATRICK J J. Chesapeake bay sediment flux model[R]. Annapolis,MD:Chesapeake Bay Program Office,US EPA,1993:3-12.
    [4] DAGG M J,AMMERMAN J W,AMON M W,et al. A review of water column processes influencing hypoxia in the northern Gulf of Mexico[J].Estuaries and Coasts,2007,30(5):735-752.
    [5] CHESTERIKOFF A,GARBAN B,BILLEN G,et al. Inorganic nitrogen dynamics in the River Seine downstream from Paris(France)[J].Biogeochemistry,1992,17(3):147-164.
    [6]白洁,陈春涛,赵阳国,等.辽河口湿地沉积物硝化细菌及硝化作用研究[J].环境科学,2010,31(12):3011-3017.BAI Jie,CHEN Chuntao,ZHAO Yangguo,et al. Studies on nitrobacteria and nitrification in Liaohe estuary wetland sediments[J].Environmental Science,2010,31(12):3011-3017.
    [7]徐继荣,王友绍,殷建平,等.大亚湾海域沉积物中的硝化与反硝化作用[J].海洋与湖沼,2007,38(3):206-211.XU Jirong,WANG Youshao,YIN Jianping,et al. Nitrification and denitrification in the sediments of the Daya Bay Area[J]. Ocean and Limnian Nature,2007,38(3):206-211.
    [8]陈梅娟,蒋进元,周岳溪,等.自养硝化细菌的分离,鉴定及系统发育分析[J].环境科学研究,2010,23(3):340-345.CHEN Meijuan,JIANG Jinyuan,ZHOU Yuexi,et al. Isolation,identification and phylogenetic analysis of autotrophic nitrification bacteria[J]. Research of Environmental Sciences,2010,23(3):340-345.
    [9]黄娟,杨思思,李润青,等.低温域湿地植物根际硝化强度及氨氧化微生物研究[J].环境科学研究,2014,27(8):857-864.HUANG Juan,YANG Sisi,LI Runqing,et al. Study on nitrification intensity and ammonium oxidation microorganism in the rhizosphere of wetland plants[J].Research of Environmental Sciences,2014,27(8):857-864.
    [10]李良谟,潘映华,周秀如,等.太湖地区主要类型土壤的硝化作用及其影响因素[J].土壤,1987,19(6):289-293.LI Liangmo,PAN Yinghua,ZHOU Xiuru,et al.Nitrification and its influencing factors of main types of soil in Taihu Lake area[J].Soil,1987,19(6):289-293.
    [11]孙志高,刘景双.湿地土壤的硝化-反硝化作用及影响因素[J].土壤通报,2008,39(6):1462-1467.SUN Zhigao,LIU Jingshuang. Nitrification-denitrification and its influencing factors in wetland soil[J]. Chinese Journal of Soil Chemistry,2008,39(6):1462-1467.
    [12]陈美田,章文龙,高灯州,等.水淹频率增加对闽江河口湿地土壤硝化作用的影响[J].亚热带资源与环境学报,2016,11(4):23-28.CHEN Meitian,ZHANG Wenlong,GAO Dengzhou,et al. Effects of increased frequency of flooding on soil nitrification in wetlands of the Minjiang River estuary[J]. Journal of Subtropical Resources and Environment,2016,11(4):23-28.
    [13]杨丹,樊大勇,谢宗强,等.消落带生态系统氮素截留转化的主要机制及影响因素[J].应用生态学报,2016,27(3):973-980.YANG Dan,FAN Dayong,XIE Zongqiang,et al. Main mechanisms and influencing factors of nitrogen interception and transformation in the eco-flotation ecosystem[J]. Chinese Journal of Applied Ecology,2016,27(3):973-980.
    [14] GUJER W,HENZE M,MINO T.Activated sludge model No.3[J].Water Science and Technology,1999,39(1):183-193.
    [15] HARRY E,WILD J,CLAIR N,et al.Factors affecting nitrification kinetics[J]. Journal Water Pollution Control Federation,1971,43(9):1845-1854.
    [16] SHAMMA N K.Interactions of temperature,p H,and biomass on the nitrification process[J]. Journal Water Pollution Control Federation,1986,58(1):52-59.
    [17] BOWIE G L,ZISON W S,MILLS W B,et al.Rates,constants,and kinetics formulations in surface water quality modeling[R].Athens,Georgia:US EPA,1985,600:3-85.
    [18] HENRIKSEN K, HANSEN J, BLACKBURN T. Rates of nitrification,distribution of nitrifying bacteria,and nitrate fluxes in different types of sediment from Danish waters[J].Marine Biology,1981,61(4):299-304.
    [19] BERG P,ROSSWALL T. Ammonium oxidizer numbers,potential and actual oxidation rates in two swedish arable soils[J]. Biology and Fertility of Soils,1985,1(3):131-140.
    [20] BELSER L,MAYS E. Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments[J].Applied and Environmental Microbiology,1980,39(3):505-510.
    [21] CHAO W,BAOQING S,HONG Z,et al. Limitation of spatial distribution of ammonia-oxidizing microorganisms in the Haihe River,China,by heavy metals[J]. Journal of Environmental Sciences,2014,26(3):502-511
    [22] CHRISTENSSON M,WELANDER T. Treatment of municipal wastewater in a hybrid process using a new suspended carrier with large surface area[J]. Water Science and Technology,2004,49(11/12):207-214.
    [23] TIJHUIS L,HUISMAN J L,HEKKELMAN H D,et al.Formation of nitrifying biofilms on small suspended particles in airlift reactors[J].Biotechnology and Bioengineering,1995,47(5):585-595.
    [24] ROSTRON W M,STUCKEY D C,YOUNG A A. Nitrification of high strength ammonia wastewaters:comparative study of immobilisation media[J]. Water Research,2001,35(5):1169-1178.
    [25] ADDISCOTT T. Kinetics and temperature relationships of mineralization and nitrification in Rothamsted soils with differing histories[J].European Journal of Soil Science,1983,34(2):343-353.
    [26] STARK J M.Modeling the temperature response of nitrification[J].Biogeochemistry,1996,35(3):433-445.
    [27] PAINTER H,LOVELESS J.Effect of temperature and p H value on the growth-rate constants of nitrifying bacteria in the activatedsludge process[J].Water Research,1983,17(3):237-248.
    [28] WONG C G,LOEHR R. Kinetics of microbial nitrification:nitritenitrogen oxidation[J].Water Research,1978,12(8):605-609.
    [29] GEE C S,SUIDUN M T,PFEFFER J T,et al. Modeling of nitrification under substrate-inhibiting conditions[J]. Journal of Environmental Engineering,1990,116(1):18-31.
    [30] CARRERA J,JUBANY I,CARVALLO L,et al.Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilised biomass systems[J].Process Biochemistry,2004,39(9):1159-1165.
    [31] PESTERSEN B,GERNAEY K,DEVISSCHER M,et al. A simplified method to assess structurally identifiable parameters in Monod-based activated sludge models[J]. Water Research,2003,37(12):2893-2904.
    [32] JORGENSEN B B,REVSBECH N P.Diffusive boundary layers and the oxygen uptake of sediments and detritus[J]. Limnology and Oceanography,1985,30(1):111-122.
    [33] CAI W J,LUTHER G W,CORNWELL J C,et al.Carbon cycling and the coupling between proton and electron transfer reactions in aquatic sediments in Lake Champlain[J]. Aquatic Geochemistry,2010,16(3):421-446.
    [34] WANG C,ZHAI W,YIN W,et al. The limiting role of oxygen penetration in sediment nitrification[J]. Environmental Science&Pollution Research,2015,22(14):10910-10918.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700