毛细管网为末端的小型溴化锂吸收式制冷系统变工况实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental investigation on the small LiBr absorption refrigeration system with capillary mat terminal under various operating conditions
  • 作者:朱茂川 ; 周国兵
  • 英文作者:ZHU Maochuan;ZHOU Guobing;School of Energy, Power and Mechanical Engineering, North China Electric Power University;
  • 关键词:溴化锂 ; 吸收式制冷 ; 毛细管网 ; 太阳能 ; 制冷量 ; 性能
  • 英文关键词:lithium bromide;;absorption refrigeration;;capillary mat;;solar energy;;cooling capacity;;performance
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:华北电力大学能源动力与机械工程学院;
  • 出版日期:2018-12-05
  • 出版单位:化工进展
  • 年:2018
  • 期:v.37;No.327
  • 基金:北京市科技计划(Z151100003515002);; 北京市自然科学基金(3152022)项目
  • 语种:中文;
  • 页:HGJZ201812015
  • 页数:8
  • CN:12
  • ISSN:11-1954/TQ
  • 分类号:129-136
摘要
对毛细管网为末端的小型溴化锂吸收式制冷系统进行实验研究,分析了不同热源水温度、热源水流量、冷却水流量和冷媒水流量分别对溴冷机性能、冷媒水供水温度以及房间温度的影响。实验得出该系统相对较优外部工况为:热源水温度90~92℃,热源水流量1.5m3/h,冷却水流量4m3/h,冷媒水流量2.5m3/h。实验结果表明,提高热源水温度和冷却水流量可以明显增大机组供冷量,但也存在冷媒水供水温度降低,可能造成结露的问题;热源水流量对机组制冷量和冷媒水供水温度影响较小,不适于作为动态调节的依据;改变冷媒水流量是调节系统供冷能力和避免结露的有效手段,冷媒水流量从1.0m3/h升高到2.5m3/h,制冷量升高92.1%,冷媒水供水温度也从16.7℃上升到17.7℃。实验为今后以毛细管网为末端的小型太阳能溴化锂吸收式制冷系统应用调节提供依据和指导。
        Experiments were performed on a small LiBr absorption refrigeration system using capillary mat as the cooling terminal. The effects of heat source temperature and flow rates, cooling water flow rates, and chilled water on the unit performance, chilled water supply temperature and indoor temperature were analyzed. The optimal system performance was obtained under the following operating conditions: the heat source water temperature of 90—92℃, the heat source water flow rate of 1.5 m3/h, cooling water flow rate of 4 m3/h, and chilled water flow rate of 2.5 m3/h. The results also showed that the increase of heat source water temperature and cooling water flow rate improved the cooling capacity significantly, and decreased the chilled water supply temperature, which might cause indoor dew condensation. The heat source water flow rate had little effect on the cooling capacity and chilled water temperature, which was not suitable as the regulation basis. Changing the chilled water flow rate is an effective way for regulating cooling capacity and preventing indoor dew condensation since the cooling capacity and chilled water supply temperature respectively increased by 92.1% and 1℃(from 16.7℃ to 17.7℃) when the chilled water flow rate increased from 1.0 m3/h to 2.5 m3/h. The present results provided the evidences for the application and regulation of small solar LiBr absorption refrigeration system with capillary mat terminal.
引文
[1]ULLAH K R,SAIDUR R,PING H W,et al.A review of solar thermal refrigeration and cooling methods[J].Renewable and Sustainable Energy Reviews,2013,24(10):499-513.
    [2]GOMRI R,HAKIMI R.Second law analysis of double effect vapour absorption cooler system[J].Energy Conversion and Management,2008,49(11):3343-3348.
    [3]MODI B,MUDGAL A,PATEI B.Energy and exergy investigation of small capacity single effect lithium bromide absorption refrigeration system[J].Energy Procedia,2017,109:203-210.
    [4]GU Y X,WU Y Y,KE X.Experimental research on a new solar pump-free lithium bromide absorption refrigeration system with a second generator[J].Journal of Xi’an Jiaotong University,2006,82(1):33-42.
    [5]武俊梅,张祉祐,张秉笃.小型无泵溴化锂吸收式空调器蒸发器的研究[J].暖通空调,1995(1):8-11.WU J M,ZHANG Z Y,ZHANG B D.Design of the evaporator of the compact non-pumped LiBr absorption air conditioner[J].Heating Ventilating and Air Conditioning,1995(1):8-11.
    [6]阙雄才,李红.热虹吸泵绝热弹状流的热虹吸特性研究--无泵Li Br吸收式太阳能制冷机机理研究之二[J].太阳能学报,1989,10(1):1-13.QUE X C,LI H.Study on thermal siphon characteristics of slug flow with heat insulation in thermal siphon pump:the second mechanism studies on pumpless LiBr absorption solar refrigerating machine[J].Acta Energiae Solaris Sinica,1989,10(1):1-13.
    [7]王欣,杨洪海,张总辉,等.小型吸收式制冷热虹吸泵的正交试验设计[J].流体机械,2015,43(7):63-66.WANG X,YANG H M,ZHANG Z H,et al.Orthogonal design for thermosyphon operated in absorption refrigeration cycles[J].Fluid Machinery,2015,43(7):63-66.
    [8]谷雅秀,吴裕远,张林颖,等.小型无泵溴化锂吸收式制冷系统的实验研究[J].制冷学报,2006,27(5):17-21.GU Y X,WU Y Y,ZHANG L Y,et al.Experimental research on compact pump-free LiBr absorption refrigeration system[J].Journal of Refrigeration,2006,27(5):17-21.
    [9]谷雅秀,吴裕远,王艺,等.新型太阳能无泵溴化锂制冷系统的实验研究[J].太阳能学报,2006,27(5):473-477.GU Y X,WU Y Y,WANG Y,et al.Experimental study on new structure solar pump-free LiBr absorption chiller system[J].Acta Energiae Solaris Sinica,2006,27(5):473-477.
    [10]廉永旺,马伟斌,李戬洪.小型太阳能溴化锂制冷机的一种新型结构[J].太阳能学报,2003,24(5):601-604.LIAN Y W,MA W B,LI J H.A new structure of small solar LiBr absorption chiller[J].Acta Energiae Solaris Sinica,2003,24(5):601-604.
    [11]ZHANG Y C,ZHANG Y F.Simulation on the performance of lithium bromide absorption-refrigeration system using heat pipe exchangers[J].International Conference on Energy and Environment Technology,2009,1:321-324.
    [12]陈达卫,王启杰,林毅强.高效传热管的实验研究[J].化工学报,2004,55(6):888-895.CHEN D W,WANG Q J,LIN Y Q.Enhanced heat transfer tubes[J].Journal of Chemical Industry and Engineering,2004,55(6):888-895.
    [13]ABDOLREZA Z,ANDREI P,RANDALL L,et al.Performance evaluation of a 4.5kW(1.3 refrigeration tons)air-cooled lithium bromide/water hot-water-fired absorption unit[J].International Mechanical Engineering Congress and Exposition,2007,15:197-210.
    [14]韩东,阮建平,梁林.传热传质分离式太阳能吸收式制冷机实验研究[J].太阳能学报,2009,30(9):1168-1172.HAN D,RUAN J P,LIANG L.Experiment study on solar powered LiBr absorption chiller with heat and mass separated[J].Acta Energiae Solaris Sinica,2009,30(9):1168-1172.
    [15]梁之琦,徐孟飞,殷勇高.Li Cl溶液垂直管外降膜发生效果的实验[J].化工学报,2016,67(s2):87-93.LAING Z Q,XU M F,YIN Y G.Effect of falling-film generation outside vertical tube with lithium chloride aqueous solution[J].Journal of Chemical Industry and Engineering,2016,67(s2):87-93.
    [16]陈亚平,施晨洁,施明恒.双面膜反转强化吸收过程传热传质[J].化工学报,2008,59(1):19-24.CHEN Y P,SHI C J,SHI M H.Heat and mass transfer enhancement during absorption process with double-side film-inverting configuration[J].Journal of Chemical Industry and Engineering,2008,59(1):19-24.
    [17]HAN X D,ZHANG S W,TANG Y,et al.Mass transfer enhancement for LiBr solution using ultrasonic wave[J].Journal of Central South University,2016,23(2):405-412.
    [18]汤勇,韩晓东,陈川,等.超声波对吸收式制冷强化传质的影响[J].华南理工大学学报(自然科学版),2012,40(10):115-120.TANG Y,HAN X D,CHEN C,et al.Effects of ultrasonic waves on mass transfer enhancement in absorption refrigeration system[J].Journal of South China University of Technology(Natural Science Edition),2012,40(10):115-120.
    [19]LI G,SHE C M,WU N,et al.The solution and simulation of the condensation problem of the capillary network system in the children's hospital of Shenyang in summer[J].Procedia Engineering,2015,121:1215-1221.
    [20]SONG Z P,WANG R Z,ZHAI X Q.Solar-driven high temperature radiant cooling[J].Chinese Science Bulletin,2009,54(6):978-985.
    [21]MITTAL V,KASANA K S,THAKUR N S.Modelling and simulation of a solar absorption cooling system for India[J].Journal of Energy in Southern Africa,2006,17(3):65-70.
    [22]何梓年,朱宁,刘芳,等.太阳能吸收式空调及供热系统的设计和性能[J].太阳能学报,2001,22(1):6-11.HE Z N,ZHU N,LIU F,et al.Design and performance of a solar absorption air-conditioning and heat-supply system[J].Acta Energiae Solaris Sinica,2001,22(1):6-11.
    [23]SALEH A,MOSA M.Optimization study of a single-effect water-lithium bromide absorption refrigeration system powered by flat-plate collector in hot regions[J].Energy Conversion and Management,2014,87:29-36.
    [24]王刚,解国珍,王亮亮.溴化锂吸收式循环的内外热物理参数与机组制冷特性耦合[J].化工学报,2012,63(s2):1-7.WANG G,XIE G Z,WANG L L.Coupling inside and outside thermodynamic parameters of a LiBr absorption cycle with its refrigerating performance[J].Journal of Chemical Industry and Engineering,2012,63(s2):1-7.
    [25]LIU H J,WENG W B,GAO X L.Experimental research and analysis on cooling and heating capacity under two different capillary mats radiation[C]//2011 International Conference on Materials for Renewable Energy and Environment.USA:IEEE,2011:1245-1249.
    [26]高志宏,刘晓华,江亿.毛细管辐射供冷性能实验研究[J].太阳能学报,2011,32(1):101-106.GAO Z H,LIU X H,JIANG Y.Experiment study on cooling capacity of capillary-tube radiation air-conditioner[J].Acta Energiae Solaris Sinica,2011,32(1):101-106.
    [27]王赟,谢东,莫顺权,等.毛细管辐射冷却顶板供冷性能的数值模拟研究[J].制冷与空调,2016,30(3):287-294.WANG Y,XIE D,MO S Q,et al.Numerical modeling on cooling performance of capillary ceiling radiant cooling panel[J].Refrigeration and Air Conditioning,2016,30(3):287-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700