超声空化氧化过程中溴酸根的生成规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation of bromate in aqueous solution in the presence of Br-under ultrasonic irradiation
  • 作者:姚娟娟 ; 刘微 ; 周玲希
  • 英文作者:YAO Juanjuan;LIU Wei;ZHOU Lingxi;Urban Construction andEnvironmental Engineering,Chongqing University;
  • 关键词:超声 ; 溴酸根 ; 生成机理 ; 影响因素
  • 英文关键词:ultrasonic irradiation;;bromate;;formation mechanism;;impact factor
  • 中文刊名:FIVE
  • 英文刊名:Journal of Chongqing University
  • 机构:重庆大学城市建设与环境工程学院;
  • 出版日期:2018-06-15
  • 出版单位:重庆大学学报
  • 年:2018
  • 期:v.41
  • 基金:国家自然科学基金青年基金(51108481);; 国家水体污染控制与治理科技重大专项(2012ZX07102001-003);; 中央高校基本科研业务费资助项目(106112016CDJXY210008)~~
  • 语种:中文;
  • 页:FIVE201806010
  • 页数:7
  • CN:06
  • ISSN:50-1044/N
  • 分类号:88-94
摘要
研究了溴离子(Br~-)存在条件下,超声空化氧化过程中溴酸根(BrO_3~-)的生成机理及反应条件对其生成的影响。结果发现:超声过程中BrO_3~-的生成机理符合羟基自由基(·OH)氧化途径。BrO_3~-生成量随溴离子初始浓度的增加而增加,而溴离子转化率却随溴离子初始浓度的增加而减小。BrO_3~-的生成量随超声频率变化的大小关系为400>600>800>200kHz,存在最大的生成频率。超声声能密度从0.06 W/mL增大为0.19 W/mL时,溴酸根生成量先增大后减小。酸性条件下BrO_3~-的生成量较大,而碱性条件下BrO_3~-的生成量较小。
        Formation of bromate(BrO_3~-)in aqueous solution in the presence of Br-under ultrasonic irradiation was investigated.The results show that BrO_3~- formed by a series of reactions between hydroxyl free radical(·OH)generated by ultrasonic cavitation and Br-.The total BrO_3~- yield increases with the increase of the initial concentration of Br-.While the yield ratio of BrO_3~- to Br-decreases with the increased initial concentration of Br-.The yield of BrO_3~- at different frequencies follows the order 400>600>800>200 kHz.When the ultrasonic energy density increases from 0.06 W/mL to 0.19 W/mL,the formation rate of BrO_3~- increases first and then decreases.BrO_3~- formation rate decreases with the increase of pH.
引文
[1]Liu D,Wang Z,Zhu Q,et al.Drinking water toxicity study of the environmental contaminant:Bromate[J].Regulatory Toxicology and Pharmacology,2015,73(3):802-810.
    [2]Xiao Q,Yu S,Li L,et al.An overview of advanced reduction processes for bromate removal from drinking water:Reducing agents,activation methods,applications and mechanisms[J].Journal of Hazardous Materials,2017,324(part B):230-240.
    [3]Heeb M B,Criquet J,Zimmermann-Steffens S G,et al.Oxidative treatment of bromide-containing waters:Formation of bromine and its reactions with inorganic and organic compounds:A critical review[J].Water Research,2014,48(1):15-42.
    [4]李波,曲久辉,刘会娟,等.含溴离子水氯化过程中消毒副产物生成和分配研究[J].科学通报,2007,52(17):2071-2076.LI Bo,QU Jiuhui,LIU Huijuan,et al.Study on formation and distribution of disinfection by-products in chlorination of brominated ion[J].Chinese Science Bulletin,2007,52(17):2071-2076.(in Chinese)
    [5]Lu N,Wu X,Zhou J,et al.Bromate oxidized from bromide during sonolyticozonation[J].Ultrasonics Sonochemistry,2015,22:139-143.
    [6]Wang X,Liu L,Fang W,et al.Theoretical insight towards the photo-dissociation dynamics of O3-H2O complex:Deep understanding the source of atmospheric hydroxyl radical[J].Chemical Physics Letters.2014,608:95-101.
    [7]Sharma V K,Zboril R,Mcdonald T J.Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water:A review[J].Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes,2014,49(3):212-228.
    [8]刘阔,金浩,董为,等.钴活化过一硫酸盐氧化过程中卤代副产物的生成[J].环境科学.2016,37(5):1823-1830.LIU Kuo,JIN Hao,DONG Wei,et al.The formation of halogenated by-products during the oxidation of cobalt-activated[J].Environmental Science,2016,37(5):1823-1830.(in Chinese)
    [9]Yang Y,Pignatello J J,Ma J,et al.Comparison ofhalide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes(AOPs)[J].Environmental Science&Technology,2014,48(4):2344-2351.
    [10]Rajasekhar P,Fan L,Thong N,et al.A review of the use of sonication to control cyanobacterialblooms[J].Water Research,2012,46(14):4319-4329.
    [11]Sathishkumar P,Mangalaraja R V,Anandan S.Review on the recent improvements in sonochemical and combined sonochemical oxidation processes:A powerful tool for destruction of environmental contaminants[J].Renewable&Sustainable Energy Reviews,2016,55:426-454.
    [12]Bhangu S K,Ashokkumar M.Theory of Sonochemistry[J].Topics in Current Chemistry,2016,374(4):(UNSP 564).
    [13]Bergmann M E H,Koparal A S,Iourtchouk T.Electrochemicaladvanced oxidation processes,formation of halogenate and perhalogenatespecies:A critical review[J].Critical Reviews in Environmental Science and Technology,2014,44(4):348-390.
    [14]姚娟娟,高乃云,王成金.水中离子对超声降解2种有机磷农药的影响机理[J].重庆大学学报,2010,33(6):13-19.YAO Juanjuan,GAO Naiyun,WANG Chengjin.Effects of ion on the degradation of two organophosphorus pesticides by ultrasonic[J].Journal of Chongqing University,2010,33(6):13-19.(in Chinese)
    [15]Li H W,Zhao SS.Analysis on influencing factors of degradation of water treatment with ultrasonic wave based on GPC[J].Applied Mechanics and Materials,2014,484/485:501-506.
    [16]Janda V,Kastl G,Pivokonsky M,et al.Oxyanions ofhalogens in drinking water[J].Chemicke Listy,2015,109(5):360-363.
    [17]Fang J,Zhao Q,Fan C,et al.Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps[J].Chemosphere,2017,183:582-588.
    [18]Tyrovola K,Diamadopoulos E.Bromate formation during ozonation of groundwater in coastal areas in Greece[J].Desalination.2005,176(1/2/3):201-209.
    [19]Yang L,Sostaric J Z,Rathman J F,et al.Effect of ultrasound frequency on pulsed sonolytic degradation of octylbenzene sulfonic acid[J].Journal ofPhysical Chemistry B,2008,112(3):852-858.
    [20]Fang J,Shang C.Bromate formation from bromide oxidation by the UV/persulfateprocess[J].Environmental Science&Technology,2012,46(16):8976-8983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700