罗哌卡因乳酸羟基乙酸共聚物纳米粒制备及动物体内的缓释
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Poly(lactid-co-glycolide) nanoparticles loaded with ropivacaine: preparation and in vivo release in animals
  • 作者:田洪居 ; 陈仲清
  • 英文作者:Tian Hongju;Chen Zhongqing;Department of Intensive Care Unit, Xiamen Haicang Hospital;Department of Intensive Care Unit, Nanfang Hospital, Southern Medical University;
  • 关键词:酰胺类 ; 药物释放系统 ; 组织相容性 ; 组织工程 ; 罗哌卡因 ; 乳酸羟基乙酸共聚物 ; 纳米粒 ; 乳化溶剂挥发法 ; 缓释性 ; 镇痛 ; 载药量 ; 包封率
  • 英文关键词:,Amides;;Drug Delivery Systems;;Histocompatibility;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:厦门市海沧医院重症医学科;南方医科大学附属南方医院重症医学科;
  • 出版日期:2018-12-26
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.863
  • 基金:福建省卫生厅青年课题基金(2010-2-104),项目负责人:田洪居~~
  • 语种:中文;
  • 页:XDKF201906020
  • 页数:6
  • CN:06
  • ISSN:21-1581/R
  • 分类号:110-115
摘要
背景:课题组前期进行了罗哌卡因乳酸羟基乙酸共聚物微球合成工艺及其药物动力学的研究,并证实其有效性,但因颗粒较大,限制其在注射方面的应用,且存在对组织的刺激等不良反应。目的:采用乳剂-扩散溶剂挥发法制备罗哌卡因乳酸羟基乙酸共聚物纳米粒,研究其粉粒学特征、体内释药特性及组织毒性。方法:以乳酸羟基乙酸共聚物为载体,采用乳剂-扩散溶剂挥发法制备罗哌卡因乳酸羟基乙酸共聚物微球并加以研磨过滤,计算纳米粒的粒径、药物包封率、载药量及形态等参数。选取100只昆明小鼠(南方医科大学动物实验中心提供),随机分为实验组和对照,将罗哌卡因-乳酸羟基乙酸纳米粒悬浮液注射入实验组小鼠颈部皮下,对照组小鼠给予等剂量0.5%盐酸罗哌卡因。分别于药物注射后30 min及1,2,3,6,10,18,24,36,48 h进行血药浓度监测,观察体内释药情况,对注射部位及全身主要脏器进行病理学检查以检测其组织学毒性。结果与结论:(1)制备的罗哌卡因-乳酸羟基乙酸纳米粒,粒径为(73.5±16.7) nm,载药量为(6.07±0.22)%,包封率为(62.73±4.83)%;(2)动物体内实验结果显示:实验组小鼠与对照组相比,血药浓度明显降低(P=0.00)。对照组药物留置时间约6h,实验组药物留置时间约48h,药物持续缓释;(3)实验组小鼠药物注射局部组织仅见轻微炎症反应,每组小鼠均未见组织细胞坏死及全身主要脏器的病理学改变;(4)结果提示,罗哌卡因乳酸羟基乙酸纳米粒可以成功制备,动物体内具有明显的缓释性,组织器官毒性小。
        BACKGROUND: Synthesis of ropivacaine-loaded poly(lactid-co-glycolide) copolymer microsphere and its pharmacokinetics have been studied preliminarily, and we have confirmed its effectiveness. However, its large size and tissue simulation limit its application. OBJECTIVE: To prepare poly(lactid-co-glycolide) nanoparticles loaded with ropivacaine and to study their particle characteristics, in vivo release characteristics and toxicity. METHODS: Poly(lactid-co-glycolide) nanoparticles loaded with ropivacaine were prepared with poly(lactid-co-glycolide) as carriers by the water-in-oil-in-water emulsion solvent evaporation method. The micromeritic characteristics of the nanoparticles, such as the particle size, loading and entrapment efficiency were taken as parameters for evaluating. One hundred Kunming mice provided by the Laboratory Animal Centre of Southern Medical University in China were randomized into experimental and control groups, and then were subcutaneously injected with poly(lactid-co-glycolide) nanoparticles loaded with ropivacaine and 0.5% ropivacaine, respectively. Blood concentration monitoring was performed at 30 minutes, 1, 2, 3, 6, 10, 18, 24, 36 and 48 hours after administration. Drug release was observed in vivo, and pathological examinations were performed on the injection site and main body organs to study its tissue toxicity. RESULTS AND CONCLUSION: The poly(lactid-co-glycolide) nanoparticles loaded with ropivacaine were prepared. The average particle size was(73.5±16.7) nm, the drug loading efficiency was(6.07±0.22)%, and the encapsulation efficiency was(62.73±4.83)%. The blood drug concentration in the experimental group was significantly lower than that in the control group(P=0.00). The drug retention time in the control and experimental groups was 6 and 48 hours, respectively, indicating the drug release sustained. The mice in the experimental group appeared with mild inflammation in the injection site, and no obvious pathological changes in major organs or necrotic cells occurred. To conclude, poly(lactid-co-glycolide) nanoparticles loaded with ropivacaine can be successfully prepared, and can achieve sustained-release in animals, and have low toxicity.
引文
[1]Foley PL,Ulery BD,Kan HM,et al.A chitosan thermogel for delivery of ropivacaine in regional musculoskeletal anesthesia.Biomaterials.2013;34(10):2539-2546.
    [2]Zhang W,Ning C,Xu W,et al.Precision-guided long-acting analgesia by Gel-immobilized bupivacaine-loaded microsphere.Theranostics.2018;8(12):3331-3347.
    [3]Chou R,Gordon DB,de Leon-Casasola OA,et al.Management of postoperative pain:A clinical practice guideline From the American Pain Society.the American Society of Regional Anesthesia and Pain Medicine,and the American Society of Anesthesiologists'Committee on Regional Anesthesia,Executive Committee,and Administrative Council.J Pain.2016;17(2):131-157.
    [4]Grant GJ,Piskoun B,Bansinath M.Analgesic duration and kinetics of liposomal bupivacaine after subcutaneous injection in mice.Clin Exp Pharmacol Physiol.2003;30(12):966-968.
    [5]Joshi G,Gandhi K,Shah N,et al.Peripheral nerve blocks in the management of postoperative pain:Challenges and opportunities.J Clin Anesth.2016;35(12):524-529.
    [6]Zorzetto L,Brambilla P,Marcello E,et al.From micro-to nanostructured implantable device for local anesthetic delivery.Int J Nanomed.2016;11:2695-709.
    [7]Masters DB,Berde CB,Dutta S,et al.Sustained local anesthetic release from bioerodible polymer matrices:a potential method for prolonged regional anesthesia.Pharm.Res.1993;10(10):1527-1532.
    [8]Masters DB,Berde CB,Dutta SK,et al.Prolonged regional nerve blockade by controlled-rease of local anesthetics from a biodegradable polymer matrix.Anesthesiology.1993;79(2):340-346.
    [9]Morgalla M,Fortunato M,Azam A,et al.High-resolution three-dimensional computed tomography for assessing complications related to intrathecal drug delivery.Pain Physician.2016;19(5):E775-780.
    [10]Masters DB,Domb AJ.Liposphere local anesthetic timed-release for perineural site application.Pharm.Res.1998;15(7):1038-1045.
    [11]Santamaria CM,Woodruff A,Yang R,et al.Drug delivery systems for prolonged duration local anesthesia.Mater Today.2017;20(1):22-31.
    [12]Burbridge M,Jaffe RA.Exparel(R):A new local anesthetic with special safety concerns.Anesth Analg.2015;121(4):1113-1114.
    [13]de Paula E,Cereda CM,Fraceto LF,et al.Micro and nanosystems for delivering local anesthetics.Expert Opin.Drug Deliv.2012;9(12):1505-1524.
    [14]Mulroy MF,Larkin KL,Batra MS,et al.Femoral nerve block with 0.25%or 0.5%bupivacaine improves postoperative analgesia following outpatient arthroscopic anterior cruciate ligament repair.Reg.Anesth.Pain Med.2001;26(1):24-29.
    [15]Davidson EM,Barenholz Y,Cohen R,et al.High-dose bupivacaine remotely loaded into multivesicular liposomes demonstrates slow drug release without systemic toxic plasma concentrations after subcutaneous administration in humans.Anesth Analg.2010;110(4):1018-1023.
    [16]Ni Q,Chen W,Tong L,et al.Preparation of novel biodegradable ropivacaine microspheres and evaluation of their efficacy in sciatic nerve block in mice.Drug Des Dev Ther.2016;10:2499.
    [17]Sivakumaran D,Maitland D,Oszustowicz T,et al.Tuning drug release from smart microgel-Gel composites via cross-linking.J Colloid Interface Sci.2013;392:422-430.
    [18]Andhariya JV,Shen J,Choi S,et al.Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres.J Controlled Release.2017;255:27-35.
    [19]Belz JE,Kumar R,Baldwin P,et al.Sustained release talazoparib implants for localized treatment of BRCA1-deficient breast cancer.Theranostics.2017;7(17):4340-4349.
    [20]Hu Y,Hoerle R,Ehrich M,et al.Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.Acta Biomater.2015;85(30):30125-30132.
    [21]Mandal B,Bhattacharjee H,Mittal N,et al.Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform.Nanomedicine.2013;9(4):474-491.
    [22]Wang T,Hurwitz O,Shimada SG,et al.Anti-nociceptive effects of bupivacaine-encapsulated PLGA nanoparticles applied to the compressed dorsal root ganglion in mice.Neurosci Lett.2018;6(68):154-158
    [23]Liu J,Lv X.The pharmacokinetics and pharmacodynamics of lidocaine-loaded biodegradable poly(lactic-co-glycolic acid)microspheres.Int J Mol Sci.2014;15(10):17469-17477.
    [24]Ohri R,Blaskovich P,Wang JCF,et al.Prolonged nerve block by microencapsulated bupivacaine prevents acute postoperative pain in rats.Reg Anesth Pain Med.2012;37(6):607-615.
    [25]Cheow WS,Hadinoto K.Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.Colloids Surf B Biointerfaces.2011;85(2):214-220.
    [26]毕小宝,陈仲清,黄乐松,等.罗哌卡因乳酸羟基乙酸共聚物微球的制备及体外释药研究[J].中国药房,2008,19(13):0430-438.
    [27]田洪居,陈仲清,王照飞,等.罗哌卡因乳酸羟基乙酸共聚物微球在小鼠的坐骨神经阻滞时效及生物相容性[J].临床麻醉学杂志,2010,26(2):148-150。
    [28]方天,田迎,王建东,等.溶液中稳定分散的介孔二氧化硅纳米球的制备及其生物毒性研究[J].医学研究生学报,2013,26(10):1014-1019.
    [29]Ma P,Li T,Xing H,et al.Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles:In vitro and in vivo evaluation.Biomed Pharmacother.2017;8(9):689-695
    [30]Kopacz DJ,Bernards CM,Allen HW,et al.A model to evaluate the pharmacokinetic and pharmacodynamic variables of extended-release products using in vivo tissue microdialysis in humans:bupivacaine-loaded microcapsules.Anesth Analg.2003;97(1):124-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700