二维硫化钼的溶液法制备及其复合材料在光、电催化领域的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Solution-Based Preparation Techniques for Two-Dimensional Molybdenum Sulfide Nanosheet and Application of Its Composite Materials in Photocatalysis and Electrocatalysis
  • 作者:唐美瑶 ; 王岩岩 ; 申赫 ; 车广波
  • 英文作者:Meiyao Tang;Yanyan Wang;He Shen;Guangbo Che;Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University;College of Chemistry, Jilin Normal University;Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, Jilin Normal University;College of Physics, Jilin Normal University;
  • 关键词:二维MoS_2 ; 溶液法合成 ; 复合材料 ; 光催化 ; 电催化
  • 英文关键词:2D MoS_2;;solution-based synthesis;;composite materials;;photocatalysis;;electrocatalysis
  • 中文刊名:HXJZ
  • 英文刊名:Progress in Chemistry
  • 机构:吉林师范大学环境友好材料制备与应用教育部重点实验室;吉林师范大学化学学院;吉林师范大学功能材料物理与化学教育部重点实验室;吉林师范大学物理学院;
  • 出版日期:2018-11-24
  • 出版单位:化学进展
  • 年:2018
  • 期:v.30;No.223
  • 基金:国家自然科学基金项目(No.21576112,61705078,61704065,11504132);; 吉林省科技厅发展计划(No.20180623042TC,20180520179JH)资助~~
  • 语种:中文;
  • 页:HXJZ201811006
  • 页数:14
  • CN:11
  • ISSN:11-3383/O6
  • 分类号:56-69
摘要
作为二维(2D)过渡金属硫族化合物(TMDs)的成员之一,MoS_2因其独特的物理化学性质及在自然界中丰富的含量成为目前研究最广泛的一种半导体。凭借超薄的层状结构和可调控的禁带宽度,单层和多层的二维MoS_2纳米材料在众多研究领域都备受关注。基于溶液法的合成工艺(如超声辅助液相剥离和湿化学合成法)有望实现大规模、高产量地制备二维MoS_2纳米材料,更重要的是,基于溶液法合成的二维MoS_2纳米材料便于作为模板或者载体来制备功能性复合纳米材料,有利于进一步提升其在相关应用中的性能。本文重点介绍了基于溶液制备二维MoS_2纳米材料的各种合成方法,同时特别关注了溶液法制备的二维MoS_2复合纳米材料及其在光、电催化方面的应用,并展望了溶液法合成二维MoS_2及其复合材料的应用前景和挑战。
        As a member of two-dimensional(2 D) transition metal chalcogenide compounds(TMDs), molybdenum sulfide(MoS_2) has become one of the most widely studied semiconductors because of its inherent unique physical and chemical properties as well as its abundance in nature. Due to special lamellar structure and adjustable band gap, 2 D MoS_2 have received considerable attention in the fields of catalysis, optoelectronic devices, sensing and energy storage and conversion. Solution-based techniques for preparation of 2 D MoS_2 nanosheet,such as liquid phase exfoliation methods and wet chemical synthesis methods,are promising for large-scale and high-yield preparation. More importantly, 2 D MoS_2 nanosheets obtained by solution-based method can also be used as templates or carriers to fabricate functional composites to further enhance their performance in related applications. In this review, the recent progress of solution-processed MoS_2 nanosheets is presented, with the emphasis on their versatile synthetic strategies, hybridization and their application in photocatalysis and electrocatalysis. Finally, the challenges and opportunities in this research area are proposed.
引文
[1] Tan C L, Liu Z D, Huang W, Zhang H. Chem. Soc. Rev., 2015, 44: 2615.
    [2] Huang X, Tan C, Yin Z, Zhang H. Adv. Mater., 2014, 26: 2185.
    [3] Chen Y, Tan C, Zhang H, Wang L. Chem. Soc. Rev., 2015, 44: 2681.
    [4] Xu M, Liang T, Shi M H. Chem. Soc. Rev., 2013, 113: 3766.
    [5] Zhang H. ACS Nano, 2015, 9: 9451.
    [6] Tan C, Zhang H. J. Am. Chem. Soc., 2015, 137: 12162.
    [7] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nature Nanotech., 2012, 7: 699.
    [8] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nature Nanotech., 2013, 5: 263.
    [9] Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science, 2013, 340: 1226419.
    [10] Tan C, Zhang H. Chem. Soc. Rev., 2015, 44: 2713-2731.
    [11] Zhang Y J, Onga M, Qin F, Sh W, Zak A, Tenne R, Smet J, Iwasa Y. Mater., 2018, 5(3): 035002.
    [12] Iqbal M Z, Qureshi N A, Hussain G. J. Magn. Magn. Mater., 2018, 457.
    [13] Hu W, Yang J L. J. Mater. Chem., 2017, 5(47): 12289.
    [14] Noori Y J, Cao Y M, Roberts J, Woodhead C, Bernardo-Gavito R, Tovee P, Young R J. ACS Photonics, 2016, 3(12): 2515.
    [15] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105: 4.
    [16] Li H, Wu J, Yin Z, Zhang H. Acc. Chem. Res., 2014, 47: 1067.
    [17] Radisavljevic B, Radenovic A. Nature Nanotech., 2011, 6: 147.
    [18] Li H, Qi X, Wu J, Zeng Z, Wei J, Zhang H. ACS Nano, 2013, 7: 2842.
    [19] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10: 1271.
    [20] Li H, Lu G, Yin Z, He Q, Li H, Zhang Q, Zhang H. Small, 2012, 8: 682.
    [21] Wang X W, Wu P Y. ACS Appl. Mater. Inter., 2018, 135.
    [22] Lin.X Y, Wang J. J. Mater. Sci-Mater. El., 2018, 29(6): 4658.
    [23] Baby M, Kumar K R. J. Mater. Sci-Mater. El., 2018, 29(6): 4658.
    [24] Wu T, Zhang H. Angew. Chem. Int. Edit., 2015, 54: 4432.
    [25] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. ACS Nano, 2012, 6: 74.
    [26] Lopez-Sanchez O, Lembke D, Kayci M. Radenovic A, Kis A. Nature Nanotech., 2013, 8: 497.
    [27] Liu J, Zeng Z, Cao X, Lu G, Wang L H, Fan Q L, Huang W, Zhang H. Small, 2012, 8: 3517.
    [28] Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Angew. Chem. Int. Edit., 2011, 50: 11093.
    [29] Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8: 63.
    [30] Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H. J. Am. Chem. Soc., 2013, 135: 5998.
    [31] Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Nat. Commun., 2013, 4: 1444.
    [32] Yin Z, Chen B, Bosman M, Cao X, Chen J, Zheng B, Zhang H. Small, 2014, 10: 3537.
    [33] Yu Y F, Huang S Y, Li Y P, Steinmann S N, Yang W T, Cao L Y. Nano Lett., 2014, 14: 553.
    [34] Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135: 17881.
    [35] Yan Y, Xia B, Xu Z, Wang X. ACS Catal., 2014, 4: 1693.
    [36] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. P. Natl. Acad. Sci. U.S.A., 2005, 102: 10451.
    [37] Zhao Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y, Dresselhaus M S, Xiong Q H. Nano Lett., 2013, 13: 1007.
    [38] Zeng H L, Dai J F, Yao W, Xiao D, Cui X D. Nature Nanotech., 2012, 7: 490.
    [39] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S. Nano Lett., 2012, 12: 3695.
    [40] Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12: 1538.
    [41] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J. Small, 2012, 8: 966.
    [42] Shi Y, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J. Nano Lett., 2012, 12: 2784.
    [43] Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. ACS Nano, 2012, 6: 7311.
    [44] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M. Nano Lett., 2011, 11: 5111.
    [45] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R, Shaffer M S P, Coleman J N. ACS Nano, 2012, 6: 3468.
    [46] Zhang X, Lai Z, Tan C, Hua Z. Angew. Chem. Int. Edit., 2016, 47: 8816.
    [47] Matte H, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. Angew. Chem., 2010, 122: 4153.
    [48] Wang P, Sun H, Ji Y, Li W, Wang X. Adv. Mater., 2014, 26: 964.
    [49] Ciesielski A, Samori P. Chem. Soc. Rev., 2014, 43: 381.
    [50] Kim J, Kwon S, Cho D H, Kang B, Kwon H, Kim Y, Park S O, Jung G Y, Shin E, Kim W G, Lee H, Ryu G H, Choi M, Kim T H, Oh J, Park S, Kwak S K, Yoon S W, Byun D, Lee Z, C. Lee. Nat. Commun., 2015, 6: 8294.
    [51] Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U. et al. Science, 2011, 331: 568.
    [52] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R. ACS Nano, 2012, 6: 3468.
    [53] Coleman J N, O’Neill M Lotya, Bergin A S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Science, 2011, 331: 568.
    [54] O’Neill A, Khan U, Coleman J N. Chem. Mater.,2012, 24: 2414.
    [55] Sun X, Deng H, Zhu W, Zhi Y, Wu C Z, Xie Y. Angew. Chem. Int. Edit., 2016, 55: 1704.
    [56] Zhou K G, Mao N N, Wang H X, Peng Y, Zhang H L. Angew. Chem. Int. Edit., 2011, 50: 10839.
    [57] Jawaid A, Nepal D, Park K, Jespersen M, Qualley A, MirauP, DrummyL F, VaiaR A. Chem. Mater., 2016, 28(1): 337.
    [58] Grayfer E D, KozlovaM N, Fedorov V E. Adv. Colloid Interface Sci., 2017, 245: 40.
    [59] Zhou K G, Mao N N, Wang H X, Peng Y, Zhang H L. Angew Chem. Int. Ed., 2011, 50: 10839.
    [60] Shen J F, Wu J J, Wang M, Dong P, Xu J X, Li X G, Zhang X, Yuan J H, Wang X F, Ye M X, Robert V, Lou J, Ajayan P M. Small, 2016, 12(20): 2741.
    [61] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R, Shaffer M S P, Coleman J N. ACS Nano, 2012, 6: 3468.
    [62] Zhang S L, Jung H, Huh J S, Yu J B, Yang W C. J. Am. Chem. Soc., 2014, 14: 8518.
    [63] Dong L, Lin S, Yang L, Zhang J, Yang C, Yang D, Lu H. Chem. Commun., 2014, 50: 15936.
    [64] Halim U, Zheng C R, Chen Y, Lin Z, Jiang S, Cheng R, Huang Y, Duan X. Nat. Commun., 2013, 4: 2213.
    [65] Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J, Minett A I, Nicolosi V, Coleman J N. Adv. Mater., 2011, 23: 3944.
    [66] Mao B, Yuan Y, Shao Y, Yang B, Xiao Z, Huang J. J. Comput. Theor. Nanosci., 2014, 6, 685.
    [67] Guardia L, Paredes J I, Rozada R, Villar-Rodil S. RSC Adv., 2014, 4: 14115.
    [68] Guan G, Zhang S, Liu S, Cai Y, Low M, Teng C P, Phang I Y, Cheng Y, Duei K L, Srinivasan B M, Zheng Y, Zhang Y W, Han M Y. J. Am. Chem. Soc., 2015, 137: 6152.
    [69] Yeon C, Yun S J, Yang J, Youn D H, Wook J. LimSmall, 2018, 14(2): 1702747.
    [70] Li J, Yu K, Tan Y, Fu H, Zhang Q, Cong W, Song C. Dalton Trans., 2014, 43: 13136.
    [71] Zheng J, Zhang H, Dong S, Liu Y, Tai Nai C, Suk Shin H, Young Jeong H, Liu B, Ping Loh K. Nat. Commum., 2014, 5, 2995.
    [72] Niu L, Li K, Zhen H, Chui Y S, Zhang W, Yan F, Zheng Z. Small, 2014, 10: 4651.
    [73] Bang G S, Nam K W, Kim J Y, Shin J, Choi J W, Choi S Y. ACS Appl. Mater. Inter., 2014, 6: 7084.
    [74] Tan S M, Sofer Z, Luxa J, Pumera M. ACS Catalysis, 2016, 6(7): 4594.
    [75] Yao Y G, Tolentino L, Yang Z Z, Song X J, Zhang W, Chen Y S, Wong C P. Adv. Funct. Mater., 2013, 23: 3577.
    [76] Wu J Y, Lin M N, Wang L D, Zhang T. J. Nanomater, 2014, 852735.
    [77] Yao Y, Lin Z, Li Z, Song X, Moon K S, Wong C P. J. Mater. Chem., 2012, 22: 13494.
    [78] Van Thanh D, Pan C C, Chu C W, Wei K H. RSC Adv., 2014, 4: 15586.
    [79] Yu L, Xu F, Xue B, Luo Z, Zhang Q, Bao B, Su S, Weng L, Huang W, Wang L. Nanoscale, 2014, 6: 5762.
    [80] Liu Y L, Zhong Q H, Chen K Q, Zhou J, Yang X, Chen W. J. Mater. Sci-Mater. El., 2017, 28(18): 13633.
    [81] Altavilla C, Sarno M, Ciambelli P. Chem. Mater., 2011, 23, 3879.
    [82] Shi Y, Huang J K, Jin L, Hsu Y. T, Yu S F, Li L J, Yang H Y. Sci. Rep., 2013, 3: 1839.
    [83] Bessonov A A, Kirikova M N, Petukhov D I, Allen M, Ryh’nen T, Bailey M J A. Nature Mater., 2015, 14: 199.
    [84] Yun J M, Noh Y J, Lee C H, Na S I, Lee S, Jo S M, Joh H I, Kim D Y. Small, 2014, 10: 2319.
    [85] Wang L, Huang Z C, Wang R, Liu Y B, Qian C, Wu J, Liu J W. ACS Appl. Mater. Inter., 2018, 10: 4409.
    [86] Pang P F, Teng X, Chen M, Zhang Y L, Wang H B, Yang C, Yang W R, Barrow C J. Sensor. Actuat. B-Chem., 2018, 266: 400.
    [87] Burman D, Santra S, Pramanik P, Guha P K. Nanotechnology, 2018, 11: 115504.
    [88] Solanki S, Soni A, Pandey M K, Biradar A, Sumana G. ACS Appl. Mater. Inter., 2018, 10(3): 3020.
    [89] Li M J, Zheng Y N, Liang W B, Yuan, R, Chai Y Q. ACS Appl. Mater. Inter., 2017, 9(48): 42111.
    [90] Zhou W J, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H. Small, 2013, 9: 140.
    [91] Xu X, Fan Z, Ding S, Yu D, Du Y. Nanoscale, 2014, 6: 5245.
    [92] Chen Y, Song B, Tang X, Lu L, Xue J. Small, 2014, 10: 1536.
    [93] Chen Y, Lu J, Wen S, Lu L, Xue J. J. Am. Chem. Soc., 2014, 2: 17857.
    [94] Huang Y P, Miao Y E, Zhang L S, Tjiu W W, Pan J S. Nanoscale, 2014, 6: 10673.
    [95] Yin Y, Zhang X, Cai Y Q, Chen J Z, Wong J I, Tay Y Y, Chai J W, Wu J M T, Zeng Z Y, Zheng B, Yang H Y, Zhang H. Angew. Chem. Int. Edit., 2014, 53: 12560.
    [96] Qin P, Fang G, Ke W, Cheng F, Zheng Q, Wan J, Lei H, Zhao X. J. Am. Chem. Soc., 2014, 2: 2742.
    [97] Jeffery A, Nethravathi C, Rajamathi M. J. Phys. Chem. C, 2014, 118: 1386.
    [98] Chen B, MengY H, Sha J W, Zhong C, Hua W B, Zhao N Q. Nanoscale, 2018, 10(1): 34.
    [99] Rahmanian E, Malekfar R, Pumera M. Chem.-Eur. J., 2018, 24(1): 18.
    [100] Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Woods C R, Sanchez Roma-guera V, Georgiou T, Eckmann A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S, Casiraghi C. Nano Lett., 2014, 14: 3987.
    [101] Chen J, Wu X J, Yin L, Li B, Hong X, Fan Z, Chen B, Xue C, Zhang H. Angew. Chem. Int. Edit., 2015, 54: 1210.
    [102] Peng W C, Li Y, Zhang F B, Zhang G L, Fan X B. Ind. Eng. Chem. Res., 2017, 56(16): 4611.
    [103] Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S. Chem. Mater., 2014, 26: 2344.
    [104] David L, Bhandavat R, Singh G. ACS Nano, 2014, 8: 1759.
    [105] Sun G, Liu J, Zhang X, Wang X, Li H, Yu Y, Huang W, Zhang H, Chen P. Angew. Chem., 2014, 53: 12576.
    [106] Zhou X, Wan L J, Guo Y G. Chem. Commun., 2013, 49: 1838.
    [107] Tai S Y, Liu C J, Chou S W, Chien F S S, Lin J Y, Lin T W. J. Mater. Chem., 2012, 22: 24753.
    [108] Chen Y, Sun H, Peng W. Nano Mater., 2017, 7(3): 62.
    [109] Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M.P. Natl. Acad. Sci. U.S.A.,2006, 103: 10186.
    [110] Lu G, Hupp J T. J. Am. Chem. Soc., 2010, 132: 7832.
    [111] Shen L, Luo M, Liu Y, Liang R, Jing F, Wu L. Appl. Catal. B, 2015, 166/167: 445.
    [112] Berntsen N, Gutjahr T, Loeffler L, Gomm J R, Seshadri R, Tremel W. Chem. Mater., 2003, 15: 4498.
    [113] Hou Y, Wen Z, Cui S, Guo X, Chen J. Adv. Mater., 2013, 25: 6291.
    [114] Xiang Q, Yu J, Jaroniec M. J. Am. Chem. Soc., 2012, 134: 6575.
    [115] Khan M, Yousaf A B, Chen M, Wei C S, Wu X, Huang N D, Qi Z M, Li L B. Nano Research, 2016, 9(3): 837.
    [116] Ravikumar C H, Nair G V, Muralikrishna S, Nagaraju D H, Balakrishna R G. Mater. Lett., 2018, 220: 133.
    [117] Ding S, Chen J S, Lou X W. Chemistry-Eur. J., 2011, 17: 13142.
    [118] Shi Y, Wang Y, Wong J I, Tan A Y S, Hsu C L, Li L J, Lu Y C, Yang H Y. Sci. Rep., 2013, 3: 2169.
    [119] Zhou F, Xin S, Liang H W, Song L T, Yu S H. Angew. Chem. Int. Edit., 2014, 53: 11552.
    [120] Wang C, Wan W, Huang Y, Chen J, Zhou H H, Zhang X X. Nanoscale, 2014, 6: 5351.
    [121] Weng Q, Wang X, Wang X, Zhang C, Jiang X, Bando Y, Golberg D. J. Mater. Chem. A, 2015, 3: 3097.
    [122] Voiry D, Goswami A, Kappera R, Silva C D C E, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla M. Nature Chem., 2015, 7: 45.
    [123] Chou S S, De M, Kim J, Byun S, Dykstra C, Yu J, Huang J, Dravid V P. J. Am. Chem. Soc., 2013, 135: 4584.
    [124] (a)Chang K, Chen W. ACS Nano, 2011, 5, 4720;(b)Backes C, Berner N C, Chen X, Lafargue P, LaPlace P, Freeley M, Duesberg G S, Coleman J N, McDonald A R. Angew. Chem. Int. Edit., 2015, 54: 2638.
    [125] Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H. ACS Nano, 2014, 7: 7078.
    [126] Pan L, Liu Y T, Xie X M, Zhu X D. Chem.-Asian J., 2014, 9: 1519.
    [127] Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P. Angew. Chem. Int. Ed., 2015, 54, 4651.
    [128] Sun H, Chao J, Zuo X, Su S, Liu X, Yuwen L, Fan C, Wang L. RSC Adv., 2014, 4: 27625.
    [129] Kim J, Byun S, Smith A J, Yu J. J. Phys. Chem.Lett., 2013, 4: 1227.
    [130] Bai S, Wang L, Chen X, Du J, Xiong Y. Nano Res., 2015, 8: 175.
    [131] Laursen A B, Kegnaes S, Dahl S. Energy & Environ. Sci., 2012, 5: 5577.
    [132] Ding Q, Meng F, English C R, Caban-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S, J. Am. Chem. Soc., 2014, 136: 8504.
    [133] Zhang W, Xiao X, Li Y, Zeng X, Zheng L, Wan C, Appl. Surf. Sci., 2016, 389: 496.
    [134] Yang X, Huang H, Kubota M, He Z, Kobayashi N, Zhou X, Jin B, Luo J. Mater. Res. Bull., 2016, 76: 79.
    [135] Tan C, Qi X, Liu Z, Zhao F, Li H, Huang X, Shi L, Zheng B, Zhang X, Xie L, Tang Z, Huang W, Zhang H, J. Am. Chem. Soc., 2015, 137: 1565.
    [136] Schornbaum J, Winter B, Schieβl S P, Gannott F, Katsukis G, Guldi D M, Spiecker E, Zaumseil J. Adv. Funct. Mater., 2014, 24: 5798.
    [137] Wang R T, Jin D D, Zhang Y B, Wang S J, Lang J W, Yan X B, Zhang L. J. Mater. Chem. A, 2017, 5(1): 292.
    [138] Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L, Jin S. J. Am. Chem. Soc., 2013, 135: 10274.
    [139] Wang Z, Mi B. Environ. Sci. Technol., 2017, 51(15): 8229.
    [140] Xiang Q J, Yu J G, Jaroniec M. J. Am. Chem. Soc., 2012, 15: 6575.
    [141] Pramoda K, Kaur M, Gupta U, Rao C N R. Dalton Trans., 2016, 45(35): 13810.
    [142] Song H J, You S, Jia X H,.Jin Y. Ceram. Int., 2015, 41: 13896.
    [143] Yu Y, Huang S Y, Li Y, Steinmann S N, Yang W, Cao L L. Nano Lett., 2014, 14: 553.
    [144] Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W, Xie Y. Adv. Mater., 2013, 25: 5807.
    [145] Zhai C, Zhu M, Bin D, Ren F, Wang C, Yang P, Du Y. J. Power Sources, 2015, 275: 483.
    [146] Wang H, Lu Z, Xu S, Kong D, Cha J J, Zheng G, Hsu P C, Yan K, Bradshaw D, Prinz F B, Cui Y. P. Natl. Acad. Sci.U.S.A., 2013, 110: 19701.
    [147] Tang Q, Jiang D E, ACS Catal., 2016, 6: 4953.
    [148] Kibsgaard J, Chen Z, Reinecke B N, Jaramillo T F, Nature Mater., 2012, 11:963.
    [149] Ye Z F, Yang J, Li B, Shi L, Ji H X, Song L, Xu H X. Small, 2017, 13(21): 1700111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700