辽东湾夏季叶绿素a分布特征与浮游植物溶解有机碳释放率估算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:DISTRIBUTION OF CHLOROPHYLL aAND ESTIMATION OF RELEASING RATE OF DOC BY PHYTOPLANKTON DURING SUMMER IN LIAODONG BAY,CHINA
  • 作者:裴绍峰 ; 祝雅轩 ; 张海波 ; 叶思源 ; 袁红明 ; 丁喜桂 ; 刘海月
  • 英文作者:PEI Shaofeng;ZHU Yaxuan;ZHANG Haibo;YE Siyuan;YUAN Hongming;DING Xigui;LIU Haiyue;Key Laboratory of Coastal Wetland Biogeosciences,China Geological Survey;Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology;Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Natural Resources;College of Chemistry and Chemical Engineering,Ocean University of China;Geochemical Exploration and Marine Geological Survey,East China Mineral Exploration and Development Bureau;
  • 关键词:叶绿素 ; 溶解有机碳 ; 初级生产力 ; 浮游植物 ; 营养盐 ; 辽东湾
  • 英文关键词:chlorophyll;;dissolved organic carbon;;primary productivity;;phytoplankton;;nutrient;;Liaodong Bay
  • 中文刊名:HYDT
  • 英文刊名:Marine Geology Frontiers
  • 机构:中国地质调查局滨海湿地生物地质重点实验室;青岛国家海洋科学技术实验室海洋地质过程与环境功能实验室;自然资源部海洋油气资源和环境地质重点实验室;中国海洋大学化学化工学院;江苏省有色金属华东地质勘查局地球化学勘查与海洋地质调查研究院;
  • 出版日期:2018-09-28
  • 出版单位:海洋地质前沿
  • 年:2018
  • 期:v.34;No.430
  • 基金:国家自然科学基金(41306175);; 人力资源和社会保障部留学人员科技活动项目择优重点项目,市南区科技发展资金(2013-14-007-JY);; 国土资源部公益性行业科研专项基金(201111023);; 政府间国际科技创新合作重点专项(2016YFE0109600);; 江苏滨海湿地多圈层交互带综合地质调查项目(DD20189503)
  • 语种:中文;
  • 页:HYDT201809009
  • 页数:9
  • CN:09
  • ISSN:37-1475/P
  • 分类号:67-75
摘要
基于2013年夏季现场调查和14 C同位素示踪培养实验结果,对辽东湾水文环境参数、叶绿素a浓度与分布、浮游植物在光合作用过程中的溶解有机碳释放率进行了测试和分析。结果表明,辽东湾夏季叶绿素a表层平均值约为(6.10±0.41)mg/m3,且在局部出现显著的高值区和低值区,其中高值区可能存在藻华现象。叶绿素a低值区出现在双台子河的河口,主要原因是河水中过量泥沙悬浮物降低该区水体透明度,从而导致浮游植物生长受到光限制。6个典型站点的溶解有机碳释放率范围为(1.69±0.06)~(7.59±0.94)mg/(m3·h),平均值为(3.42±0.94)mg/(m3·h),占总有机碳生产率的3.57%~7.30%,平均为4.94%±0.59%。回归分析结果表明,叶绿素a含量对初级生产力的大小具有直接影响,而浮游植物溶解有机碳的释放率也与叶绿素a和光合作用率具有显著的线性相关性,表明在辽东湾水域富营养化所导致的局部高生物量促进了水体藻类光合固碳效率,溶解有机碳的生产率也同步增高。
        Based on an in situinvestigation and incubation experiments using 14 C as a tracer during the summer of 2013 in Liaodong Bay,China,we examined the concentrations and distributions of the environmental parameter,chlorophyll a(Chl a),and the releasing rates of dissolved organic carbon(DOC)by phytoplankton in the process of photosynthesis.Results show that the average concentration of Chl ais(6.10±0.41)mg/m3 in the surface water.Several high-and low-Chl azones appeared in some places of the bay with possible blooms in the high-Chl aareas,which resulted in the fast consumption of nutrients.An apparent low-Chl azone appeared nearby the mouth of Shuangtaizi River,and the weak light availability caused by sandy suspended particulate matter(SPM)was probably the limiting factor for phytoplankton growth in this region.The estimated total DOC productivities at six selected typical stations range from(1.69±0.06)to(7.59±0.94)mg/(m3·h)with an average of(3.42±0.94)mg/(m3·h),and account for 4.94%±0.59% of the total primary productivities.Regression analyses suggest that the concentration of Chl a,i.e.phytoplankton biomass,was correlated well with the primary productivities.The DOC releasing rate by phytoplankton was correlated well with the Chl aconcentrations and phytoplankton photosynthesis rates,implying that regional high biomass caused by eutrophication promote the high primary productivities and high releasing rates of DOC as well in Liaodong Bay.
引文
[1]孙军.海洋生物的初级生产力[M]∥相建海.中国国情系列丛书——中国海情.北京:开明出版社,2003:197-215.
    [2]Field C B,Behrenfeld M J,Randerson J T,et al.Primary production of the biosphere:integrating terrestrial and oceanic components[J].Science,1998,281(5374):237-240.
    [3]Chassot E,Bonhommeau S,Dulvy N K,et al.Global marine primary production constrains fisheries catches[J].Ecology Letters,2010,13(4):495-505.
    [4]Falkowski P G,Raven J A.Aquatic Photosynthesis[M].2ed.Princeton,NJ USA:Princeton University Press,2007.
    [5]Arrigo K R.Carbon cycle:Marine manipulations[J].Nature,2007,450(7169):491-492.
    [6]Behrenfeld M J,O'Malley R T,Siegel D A,et al.Climatedriven trends in contemporary ocean productivity[J].Nature,2006,444(7120):752-755.
    [7]裴绍峰,Laws E A,叶思源,等.利用14C标记技术测定海洋初级生产力的绉议[J].海洋科学,2014,38(12):149-156.
    [8]Azam F,Fenchel T,Field J G,et al.The ecological role of water-column microbes in the sea[J].Marine Ecology Progress Series,1983,10(3):257-263.
    [9]焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J].中国科学:地球科学,2013,43(1):1-18.
    [10]Jiao N,Herndl G J,Hansell D A,et al.The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool[J].Nature Reviews Microbiology,2011,9(7):555-555.DOI:10.1038/nrmicro2386-c5
    [11]Jiao N,Zheng Q.The Microbial Carbon Pump:from Genes to Ecosystems[J].Applied and Environmental Microbiology,2011,77(21):7439-7444.
    [12]袁宇,朱京海,侯永顺,等.辽东湾入海污染物调查及海域水质安全分析[J].中国安全科学学报,2008(2):12-16,180.
    [13]田金,宋伦,王年斌,等.辽东湾北部海域营养状况与趋势评价[J].海洋通报,2007,26(6):113-118.
    [14]方志刚,穆云侠.渤海辽东湾富营养化的趋势研究[J].环境保护科学,2001(3):15-17.DOI:10.3969/j.issn.1004-6216.2001.03.006
    [15]刘学海,袁业立.渤海近岸水域近年生态退化状况分析[J].海洋环境科学,2008,27(5):531-536.
    [16]马志强,周遵春,薛克,等.辽东湾北部海区初级生产力与渔业资源的关系[J].水产科学,2004,23(4):12-15.
    [17]费尊乐,毛兴华,朱明远,等.渤海生产力研究—I.叶绿素a的分布特征与季节变化[J].海洋学报:中文版,1988,10(1):99-106.
    [18]费尊乐,毛兴华,朱明运,等.渤海生产力研究——Ⅱ.初级生产力及潜在渔获量的估算[J].海洋学报:中文版,1988,10(4):481-489.
    [19]吕瑞华.山东沿海浮游植物的同化系数[J].青岛海洋大学学报,1993,23(3):49-54.
    [20]孙松,张永山,吴玉霖,等.胶州湾初级生产力周年变化[J].海洋与湖沼,2005,36(6):481-486.
    [21]宁修仁,刘子琳,蔡昱明.我国海洋初级生产力研究二十年[J].东海海洋,2000,18(3):13-20.
    [22]Wernand M R.On the history of the Secchi disc[J].Journal of the European Optical Society:Rapid publications,2010,5(10013s):1-6.DOI:10.2971/jeos.2010.10013s
    [23]Luhtala H,Tolvanen H.Optimizing the use of Secchi depth as a proxy for euphotic depth in coastal waters:An empirical study from the Baltic Sea[J].ISPRS International Journal of Geo-Information,2013,2(4):1153-1168.
    [24]Preisendorfer R W.Secchi disk science:Visual optics of natural waters[J].Limnology and Oceanography,1986,31(5):909-926.
    [25]Strickland J D H,Parsons T R.A Practical Handbook of Seawater Analysis[M].2ed.Ottawa:Fisheries Research Board of Canada,1972:261-278.
    [26]Westberry T,Behrenfeld M.Oceanic Net Primary Production[M]∥Hanes J M.Biophysical Applications of Satellite Remote Sensing.Berlin Heidelberg:Springer,2014:205-230.
    [27]Peterson B J.Aquatic primary productivity and the 14CCO2 method:a history of the productivity problem[J].Annual Review of Ecology and Systematics,1980,11:359-385.https:∥doi.org/10.1146/annurev.es.11.110180.002043
    [28]Vernet M,Smith R C.Measuring and modeling primary production in marine pelagic ecosystems[M]∥Fahey T J,Knapp A K.Principles and Standards for Measuring Primary Production.Oxford,New York:Oxford University Press,2007:142-174.
    [29]Banse K.On the dark bottle in the 14C method for measuring marine phytoplankton production[C]∥ICES Marine Science Symposia.1993.
    [30]Shen Z L,Qun L,Win W,et al.Nutrient structure of seawater and ecological responses in Jiaozhou Bay,China[J].Estuarine Coastal and Shelf Science,2006,69(1/2):299-307.
    [31]Pei S,Shen Z,Laws E A.Nutrient dynamics in the upwelling area of Changjiang(Yangtze River)estuary[J].Journal of Coastal Research,2009,25(3):569-580.
    [32]裴绍峰,沈志良.长江口上升流区营养盐的分布及其通量的初步估算[J].海洋科学,2008,32(9):64-75.
    [33]Lorenzen C J.Determination of chlorophyll and pheo-pigments:spectrophotometric equations1[J].Limnology and Oceanography,1967,12(2):343-346.DOI:10.4319/lo.1967.12.2.0343
    [34]Jeffrey S W,Humphrey G F.New spectrophotometric equations for determining chlorophylls a,b,c1and c2in higher plants,algae and natural phytoplankton[J].Biochemie und Physiologie der Pflanzen,1975,167:191-194.
    [35]Reynolds C S.The Ecology of Phytoplankton[M].New York:Cambridge University Press,2006:1-535.
    [36]吕瑞华,夏滨,李宝华,等渤海水域初级生产力10年间的变化[J].黄渤海海洋,1999,17(3):80-86.
    [37]宛立,田继辉,马志强,等.辽东湾北部海域表层水体夏季油类的污染状况[J].水产科学,2007,26(9):515-517.
    [38]Pei S,Laws E A,Zhang H,et al.Study on chemical hydrography,chlorophyll-a and primary productivity in Liaodong Bay,China[J].Estuarine,Coastal and Shelf Science,2018,202:103-113.https:∥doi.org/10.1016/j.ecss.2017.12.012
    [39]王俊,李洪志.渤海近岸叶绿素和初级生产力研究[J].海洋水产研究,2002,23(1):23-28.
    [40]Pei S,Laws E A,Zhang H,et al.Patchiness of phytoplankton and primary production in Liaodong Bay,China[J].Plos One,2017,12(2):e0173067.
    [41]Holm-Hansen O.Review and critique of primary productivity measurements[J].CalCOFI Reports,1971,17:53-56.
    [42]Teira E,Pazo M J,Serret P,et al.Dissolved organic carbon production by microbial populations in the Atlantic Ocean[J].Limnology and Oceanography,2001,46(6):1370-1377.
    [43]焦念志,王荣.海洋初级生产光动力学及产品结构[J].海洋学报:中文版,1994,16(5):85-91.
    [44]郑爱榕,李文权,陈敏.浮游植物释放的溶解有机碳对初级生产力测定的低估偏差研究[J].厦门大学学报:自然科学版,1992,31(4):408-412.
    [45]Aristegui J,Montero M F,Ballesteros S,et al.Planktonic primary production and microbial respiration measured by 14C assimilation and dissolved oxygen changes in coastal waters of the Antarctic Peninsula during austral summer:implications for carbon flux studies[J].Marine Ecology-Progress Series,1996,132(1-3):191-201.
    [46]Nagata T.Production mechanisms of dissolved organic matter[C]∥Kirchman D L.Microbial Ecology of the Oceans.New Jersey,USA:John Wiley&Sons,Inc.,2000:121-152.
    [47]焦念志,汤凯,张瑶,等.海洋微型生物储碳过程与机制概论[J].微生物学通报,2013,40(1):71-86.
    [48]戴民汉,翟惟东,鲁中明,等.中国区域碳循环研究进展与展望[J].地球科学进展,2004,19(1):120-130.
    [49]吴凯.海洋溶解有机碳循环简介[J].科技资讯,2013(8):165,178.
    [50]Bai Y,Pan D,He X,et al.Ocean primary production estimation of China Bohai Sea and Yellow Sea by HYCOCTS[R].2005.
    [51]Bianchi T S.Biogeochemistry of Estuaries[M].New York:Oxford University Press,2007.
    [52]Schlesinger W H,Bernhardt E S.Biogeochemistry:An Analysis of Global change[M].3ed.Amsterdam:Academic Press,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700