滑溜水压裂液与页岩储层化学反应及其对孔隙结构的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chemical reactions and effects of slick water fracturing fluid on the pore structures of shale reservoirs in different deposition environments
  • 作者:孙则朋 ; 王永莉 ; 吴保祥 ; 卓胜广 ; 魏志福 ; 汪亘 ; 徐亮
  • 英文作者:SUN Zepeng;WANG Yongli;WU Baoxiang;ZHUO Shengguang;WEI Zhifu;WANG Gen;XU Liang;Key Laboratory of Petroleum Resources,Gansu Province; Key Laboratory of Petroleum Resources Research,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Northeastern University at Qinhuangdao;
  • 关键词:不同沉积环境页岩 ; 滑溜水压裂液 ; 高温高压模拟 ; 水岩相互作用
  • 英文关键词:different deposition environment shale;;slick water fracturing fluid;;high temperature and pressure simulation;;water-rock interaction
  • 中文刊名:ZKYB
  • 英文刊名:Journal of University of Chinese Academy of Sciences
  • 机构:甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室;中国科学院大学;东北大学秦皇岛分校;
  • 出版日期:2018-09-15
  • 出版单位:中国科学院大学学报
  • 年:2018
  • 期:v.35
  • 基金:中国科学院战略性先导科技专项(XDB10030404,XDB03020405);; 国家自然科学基金(41572350,41503049);; 西部之光一般项目和甘肃省重点实验室项目(1309RTSA041)资助
  • 语种:中文;
  • 页:ZKYB201805019
  • 页数:8
  • CN:05
  • ISSN:10-1131/N
  • 分类号:139-146
摘要
为探究页岩气井压裂作业过程中,滑溜水压裂液对不同沉积环境(海相、陆相、海陆过渡相)页岩储层孔隙结构的影响,利用盆地深层流体-岩石相互作用模拟仪,模拟地层条件(100℃,50 MPa)下滑溜水压裂液注入过程中与不同沉积环境页岩的相互作用实验。通过对比反应前与反应72 h后3套页岩样品矿物组成、孔体积和比表面积的变化,对不同类型页岩孔隙结构的变化进行剖析。结果表明,滑溜水压裂液处理后的不同沉积环境页岩矿物组成和孔隙结构都发生了变化。海相页岩反应之后,碳酸盐矿物发生溶蚀,形成大量直径为2~8μm左右的溶蚀孔,导致纳米孔孔体积和比表面积减小。因含有较多的伊/蒙混层矿物,陆相和海陆过渡相页岩遇压裂液容易发生膨胀、分散作用,导致其孔体积及比表面积减小。该实验结果为研究滑溜水压裂液对不同沉积环境页岩储层的物理、化学作用,以及为压裂液的改造提供了一定的科学依据。
        In order to study the effects of slick water fracturing fluid on the pore structures of different deposition environments(marine,continental,and marine-continental transitional)shale reservoirs in the process of shale gas exploration,the deep basin fluid-rock interaction experimental device was used to simulate the interaction between the slick water fracturing fluid and different shales in the condition of formation(100℃,50 MPa).Through comparing the changes in mineral composition,pore volume,and specific surface area of three different deposition environment shales before and 72 h after reaction,the transformation effects of pore structure were analyzed.The results showed that the mineral composition and pore structure of different deposition environment shales changed after reaction with fracturing fluid.After reaction,the carbonate minerals(calcite and dolomite)of marine shale were corroded and many dissolution pores with diameter of 2-8μm occurred,which caused the reduction in pore volume and specific surface of nanopore.Because of the continental shale and marine-continental shale contain a large amount of mixed-layer illite/smectite mineral which is liable to dispersion and swelling when reacting with slick water fracturing fluid,the pore volume and specific surface area of these shales decreased after reaction.The results of this study provide scientific basis for study of the physical and chemical interactions between slick water fracturing fluid and different deposition environment shale reservoirs and of the transformation of fracturing fluid.
引文
[1]张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.
    [2]Loucks R G,Reed R M,Ruppel S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J].Journal of Sedimentary Research,2009,79(11/12):848-861.
    [3]卜红玲,琚宜文,王国昌,等.淮南煤田煤系泥页岩组成特征及吸附性能[J].中国科学院大学学报,2015,32(1):82-90.
    [4]Bai B J,Elgmati M,Zhang H,et al.Rock characterization of fayetteville shale gas plays[J].Fuel,2013,105:645-652.
    [5]Binnion M.How the technical differences between shale gas and conventional gas projects lead to a new business model being required to be successful[J].Marine and Petroleum Geology,2012,31(1):3-7.
    [6]蒋恕.页岩气开发地质理论创新与钻完井技术进步[J].石油钻探技术,2011,39(3):17-23.
    [7]Guo T K,Zhang S C,Qu Z Q,et al.Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J].Fuel,2014,128:373-380.
    [8]Barati R,Liang J T.A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells[J].Journal of Applied Polymer Science,2014,131(16):1-11.
    [9]Cawiezel K E,Gupta D V S.Successful optimization of viscoelastic foamed fracturing fluids with ultralightweight proppants for ultralow-permeability reservoirs[J].SPE Production&Operations,2010,25(1):80-88.
    [10]Rahm D.Regulating hydraulic fracturing in shale gas plays:the case of texas[J].Energy Policy,2011,39(5):2 974-2 981.
    [11]Palisch T T,Vincent M C,Handren P J.Slickwater fracturing:food for thought[J].SPE Production&Operations,2010,25(3):327-344.
    [12]Nicot J P,Scanlon B R.Water use for shale-gas production in Texas,US[J].Environmental Science&Technology,2012,46(6):3 580-3 586.
    [13]张磊,康钦军,姚军,等.页岩压裂中压裂液返排率低的孔隙尺度模拟与解释[J].科学通报,2014,59(32):3 197-3 203.
    [14]Aybar U,Eshkalak M O,Sepehrnoori K,et al.The effect of natural fracture’s closure on long-term gas production from unconventional resources[J].Journal of Natural Gas Science and Engineering,2014,21:1 205-1 213.
    [15]Zhang G,Chen M.Dynamic fracture propagation in hydraulic re-fracturing[J].Journal of Petroleum Science and Engineering,2010,70(3/4):266-272.
    [16]唐颖,张金川,张琴,等.页岩气井水力压裂技术及其应用分析[J].天然气工业,2010,33(10):33-38,117.
    [17]Kang Y L,Xu C Y,You L J,et al.Comprehensive evaluation of formation damage induced by working fluid loss in fractured tight gas reservoir[J].Journal of Natural Gas Science and Engineering,2014,18:353-359.
    [18]Reinicke A,Rybacki E,Stanchits S,et al.Hydraulic fracturing stimulation techniques and formation damage mechanisms-implications from laboratory testing of tight sandstone-proppant systems[J].Chemie der ErdeGeochemistry,2010,70(3):107-117.
    [19]Wang J Y,Holditch S A,Mcvay D A.Effect of gel damage on fracture fluid cleanup and long-term recovery in tight gas reservoirs[J].Journal of Natural Gas Science and Engineering,2012,9:108-118.
    [20]Yan Q,Lemanski C,Karpyn Z T,et al.Experimental investigation of shale gas production impairment due to fracturing fluid migration during shut-in time[J].Journal of Natural Gas Science and Engineering,2015,24:99-105.
    [21]董大忠,邹才能,戴金星,等.中国页岩气发展战略对策建议[J].天然气地球科学,2016,27(3):397-406.
    [22]朱麟勇,马昌期,李妙贞,等.水溶性AM/AA/AMPS共聚物的高温水解[J].应用化学,2000,17(2):117-120.
    [23]孙小明,武雄,何满潮,等.强膨胀性软岩的判别与分级标准[J].岩石力学与工程学报,2005,24(1):128-132.
    [24]赵明,季峻峰,陈振岩,等.大民屯凹陷古近系高岭石亚族和伊/蒙混层矿物特征与盆地古温度[J].中国科学:地球科学,2011,41(2):169-180.
    [25]朱宝龙,李晓宁,巫锡勇,等.黑色页岩遇水膨胀微观特征试验研究[J].岩石力学与工程学报,2015,34(S2):3 896-3 905.
    [26]陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.
    [27]杨峰,宁正福,张世栋,等.基于氮气吸附实验的页岩孔隙结构表征[J].天然气工业,2013,33(4):135-140.
    [28]Sing K S W,Everett D H,Haul R A W,et al.Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity[J].Pure and Applied Chemistry,1985,57(4):603-619.
    [29]康毅力,陈德飞,李相臣.压裂液处理对煤岩孔隙结构的影响[J].中国石油大学学报(自然科学版),2014,38(5):102-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700