石墨烯与氧化石墨烯增强富锌环氧涂层防腐性能的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Corrosion Resistance of Graphene and Graphene Oxide Reinforced Zinc Rich Epoxy Coating
  • 作者:滕帅 ; 曹凤丽 ; 高扬 ; 马晓梅 ; 智林杰
  • 英文作者:Teng Shuai;Cao Fengli;Gao Yang;Ma Xiaomei;Zhi Linjie;School of Chemistry and Chemical Engineering,Qingdao University;Key Laboratory of Nanosystem and Hierarchical Fabrication,National Center for Nanoscience and Technology;School of Chemical Engineering and Technology,Tianjin University;
  • 关键词:氧化石墨烯 ; 石墨烯 ; 富锌环氧底漆 ; 防腐性能
  • 英文关键词:graphene;;graphene oxide;;zinc rich epoxy coating;;corrosion resistance
  • 中文刊名:SDHG
  • 英文刊名:Shandong Chemical Industry
  • 机构:青岛大学化学化工学院;纳米系统与多级次制造重点实验室国家纳米科学中心;天津大学化工学院;
  • 出版日期:2018-04-23
  • 出版单位:山东化工
  • 年:2018
  • 期:v.47;No.330
  • 基金:山东省优秀中青年科学家奖励基金(BS2009CL037)
  • 语种:中文;
  • 页:SDHG201808003
  • 页数:6
  • CN:08
  • ISSN:37-1212/TQ
  • 分类号:14-18+21
摘要
研究了三种不同锌粉含量的富锌环氧底漆的腐性能,包括厚度、硬度、附着力等物理测试,比较了这三种不同锌粉含量的耐盐雾性能的差异。从而在这三种不同锌粉含量的环氧漆中选择出一种,用以进行后续的实验研究。其次,我们研究了氧化石墨烯(GO)增强富锌环氧涂层的防腐性能,包括物理性能的测试、电化学性能的测试和耐中性盐雾测试。最后,我们研究了石墨烯(G)增强富锌环氧涂层的防腐性能,同样对添加石墨烯的复合涂层进行了物理测试、电化学测试和耐中性盐雾测试。并对氧化石墨烯/富锌环氧复合涂层(GO/Zn)和石墨烯/富锌环氧复合涂层(G/Zn)的防腐性能进行了对比。发现,添加石墨烯的复合涂层(G/Zn)性能比添加氧化石墨烯的复合涂层(GO/Zn)好,且在石墨烯含量为1%时防腐性能最好。
        First,we study the decay properties of three kinds of zinc rich epoxy primers with different zinc content,including thickness,hardness,adhesion and other physical tests. The one which holding best performance was selected to carry out the subsequent experimental study. Secondly,the anticorrosion properties of graphene oxide( GO) enhanced zinc-rich epoxy coating,including physical test,electrochemical test and neutral salt spray test,are studied. Finally,the corrosion resistance of graphene( G) reinforced zinc rich epoxy coating is studied. Physical test,electrochemical test and neutral salt spray test of graphene composite coating are also carried out. The anticorrosion properties of graphene oxide/zinc rich epoxy composite coatings( GO/Zn)and graphene/zinc rich epoxy composite coatings( G/Zn) were compared in detail. It is found that the performance of the composite coating with graphene( G/Zn) is better than that of the composite coating with graphene oxide( GO/Zn),and the anticorrosion performance is best when the content of graphene is 1%.
引文
[1]Heusler K E,Landolt D,Trasatti S.Electrochemical corrosion nomenclature[J].Journal of Electroanalytical Chemistry,1990,274(1):345-348.
    [2]Trethewey K R,Chamberlain J.Corrosion:for students of science and engineering[J].Corrosion Science,1995,2:87-88.
    [3]Shaw B A,Kelly R G.What is corrosion[J].Electrochemical Society Interface,2006,15(1):24-26.
    [4]Gu H,Tadakamalla S,Zhang X,et al.Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes[J].Journal of Materials Chemistry C,2013,1(4):729-743.
    [5]Liu S,Fang Z,Yan H,et al.Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO[J].Rsc Advances,2016,6(7):5288-5295.
    [6]Liu W,Wang Y,Wang P,et al.A biomimetic approach to improve the dispersibility,interfacial interactions and toughening effects of carbon nanofibers in epoxy composites[J].Composites Part B Engineering,2017,113:197-205.
    [7]Kim K W,Kim D K,Kim B S,et al.Cure behaviors and mechanical properties of carbon fiber-reinforced nylon6/epoxy blended matrix composites[J].Composites Part B Engineering,2017,112:15-21.
    [8]Lu J H,Youngblood J P.Adhesive bonding of carbon fiber reinforced composite using UV-curing epoxy resin[J].Composites Part B Engineering,2015,82:221-225.
    [9]Barbosa A P C,Fulco A P P,Guerra E S S,et al.Accelerated aging effects on carbon fiber/epoxy composites[J].Composites Part B,2017,110:298-306.
    [10]Xu H,Zhang X,Liu D,et al.Cyclomatrix-type polyphosphazene coating:Improving interfacial property of carbon fiber/epoxy composites and preserving fiber tensile strength[J].Composites Part B Engineering,2016,93:244-251.
    [11]Zhu Y,Murali S,Cai W,et al.Graphene and Graphene Oxide:Synthesis,Properties,and Applications[J].Advanced Materials,2010,22(46):3906-3924.
    [12]Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
    [13]Bolotin K I,Sikes K J,Jiang Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008,146(9):351-355.
    [14]Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
    [15]Nair R R,lake P B,Grigorenko A N,et al.Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308.
    [16]Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [17]Geim A K.Graphene:status and prospects[J].Science,2009,324(5934):1530.
    [18]Allen M J,Tung V C,Kaner R B.Honeycomb carbon:a review of graphene[J].Chemical Reviews,2010,110(1):132-145.
    [19]Novoselov K S,Geim A K,Morozov S V,et al.Twodimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197-200.
    [20]Bunch J S,Verbridge S S,Alden J S,et al.Impermeable Atomic Membranes from Graphene Sheets[J].Nano Letters,2008,8(8):2458-2462.
    [21]Yoo E J,Kim J,Hosono E,et al.Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries[J].Nano Letters,2008,8(8):2277-2282.
    [22]Tung V C,Allen M J,Yang Y,et al.High-throughput solution processing of large-scale graphene[J].Nature Nanotechnology,2009,4(1):25-29.
    [23]Li X,Wang X,Zhang L,et al.Chemically derived,ultrasmooth graphene nanoribbon semiconductors[J].Science,2008,319(5867):1229-1232.
    [24]Geim A K,Novoselov K S,Schedin F,et al.Detection of individual gas molecules adsorbed on graphene[J].Nature Materials,2007,6(9):652-655.
    [25]Novoselov K S,Fal'Ko V I,Colombo L,et al.A roadmap for graphene[J].Nature,2012,490(7419):192-200.
    [26]Wu J,Becerril H A,Bao Z,et al.Organic solar cells with solution-processed graphene transparent electrodes[J].Applied Physics Letters,2008,92(26):263302-263303.
    [27]Ritter K A,Lyding J W.The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J].Nature Materials,2009,8(3):235-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700