煤矿硫化氢异常富集主控因素的广义灰色关联分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Generalized grey relational analysis on main controlling factors for abnormal enrichment of hydrogen sulfide in coal mine
  • 作者:林海飞 ; 张静非 ; 李树刚 ; 张超 ; 杨会军
  • 英文作者:LIN Haifei;ZHANG Jingfei;LI Shugang;ZHANG Chao;YANG Huijun;College of Safety Science and Engineering,Xi'an University of Science and Technology;Key Laboratory of Western Mine Exploitation and Hazard Prevention of the Ministry of Education;Key laboratory of Gas and Fire Control for Coal Mines;
  • 关键词:煤矿 ; 硫化氢 ; 主控因素 ; 广义灰色关联分析
  • 英文关键词:coal mine;;hydrogen sulfide;;main controlling factor;;generalized grey relational analysis
  • 中文刊名:LDBK
  • 英文刊名:Journal of Safety Science and Technology
  • 机构:西安科技大学安全科学与工程学院;西部矿井开采及灾害防治教育部重点实验室;煤矿瓦斯与火灾防治教育部重点实验室;
  • 出版日期:2017-06-20 11:13
  • 出版单位:中国安全生产科学技术
  • 年:2017
  • 期:v.13
  • 基金:国家自然科学基金科学仪器基础研究专款(51327007);国家自然科学基金项目(51504189,51674192);; 陕西省青年科技新星项目(2014KJXX69);; 陕西省教育厅专项科研项目(16JK1514)
  • 语种:中文;
  • 页:LDBK201706005
  • 页数:7
  • CN:06
  • ISSN:11-5335/TB
  • 分类号:29-35
摘要
为了探究煤矿硫化氢异常富集主控因素,以陕西彬长小庄矿4~#煤层为研究对象,通过分析煤层热演化温度、吸附特性、孔隙特征、全硫含量以及还原性指数等影响煤体自身物化性质的主控因素,并运用灰色系统理论构建广义灰色关联度评价模型,以定量的方式确定各因素的广义关联度大小。结果表明:当煤层硫化氢浓度由0.8×10~(-6)升高至6×10~(-6)时,对应热演化温度、吸附常数、BET比面积、全硫含量以及还原性指数变化范围分别为:96~113℃,28.8~36.2,0.412 5~0.986 4 m~2·g~(-1),0.21%~0.88%,3.1~8.5,主控因素综合关联度排序为:还原性指数>吸附常数>全硫含量>热演化温度>BET比表面积。
        In order to explore the main controlling factors for abnormal enrichment of hydrogen sulfide in coal mine,taking the 4~# coal seam of Binchang Xiaozhuang coal mine in Shaanxi as the research object,the main controlling factors affecting the physical and chemical properties of coal body were analyzed,including the thermal evolution temperature,adsorption characteristics,pore characteristics,total sulfur content and reducibility index of coal seam. An evaluation model of generalized grey relational degree was established by using the grey system theory,and the generalized relational degree of each factor was determined quantitatively. The results showed that the variation range of thermal evolution temperature,adsorption constant,BET specific surface area,total sulfur content and reducibility index were 96-113℃,28. 8-36. 2,0. 412 5-0. 986 4 m~2·g~(-1),0.21%-0. 88% and 3. 1-8. 5 respectively when the concentration of hydrogen sulfide in coal seam increased from 0. 8 × 10~(-6)to6 × 10~(-6). The sequence of comprehensive relational degree for the main controlling factors was: reducibility index > adsorption constant > total sulfur content > thermal evolution temperature > BET specific surface area.
引文
[1]林海,王亚楠,韦威,等.芬顿试剂处理煤矿矿井水中硫化氢技术[J].煤炭学报,2012,37(10):1760-1764.LIN Hai,WANG Yanan,WEI Wei,et al.Treatment of H2S in mine water using Fenton reagent[J].Journal of China Coal Society,2012,37(10):1760-1764.
    [2]Liu M,Deng Q,Zhao F,et al.Origin of hydrogen sulfide in coal seams in China[J].Safety Science,2012,50(4):668-673.
    [3]Machel H G.Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights[J].Sedimentary Geology,2001,140(1):143-175.
    [4]杨曙光,田继军.准噶尔盆地东部地区煤层气储层特征[J].中国煤层气,2011,8(2):20-23.YANG Shuguang,TIAN Jijun.Characteristics of CBM reservoir in eastern part of Zhunge'er basin[J].China Coalbed Methane,2011,8(2):20-23.
    [5]姜冬冬,陈萍,唐修义,等.淮南煤田8煤层中黄铁矿的特征研究及成因分析[J].中国煤炭地质,2009,21(1):22-26.JIANG Dongdong,CHEN Ping,TANG Xiuyi,et al.Characteristic study and geological genesis analysis of pyrite in No.8 coal in Huainan Coalfield[J].Coal Geology of China,2009,21(1):22-26.
    [6]尚飞.泌阳凹陷古近系核三段富有机质页岩非均质性及控制因素分析[D].武汉:中国地质大学,2015.
    [7]邓奇根.准噶尔盆地南缘中段侏罗纪煤层硫化氢成生模式及异常富集控制因素研究[D].焦作:河南理工大学,2015.
    [8]傅雪海,王文峰,岳建华,等.枣庄八一矿瓦斯中H2S气体异常成因分析[J].煤炭学报,2006,31(2):206-210.FU Xuehai,WANG Wenfeng,YUE Jianhua,et al.Genesis analyses of H2S gas abnormity in gas of Bayi Coal Mine in Zaozhuang[J].Journal of China Coal Society,2006,31(2):206-210.
    [9]王玮,周祖翼,于鹏.镜质体反射率与最高温度及其附近温度变化率的关系—几种镜质体反射率计算模型的比较[J].地球物理学报,2005,48(6):1375-1383.WANG Wei,ZHOU Zuyi,YU Peng.Relations between vitrinite reflectance,peak temperature and its neighboring temperature variation rate:Acomparison of methods[J].Chinese Journal of Geophysics,2005,48(6):1375-1383.
    [10]刘明举,李国旗,HANI,等.煤矿硫化氢气体成因类型探讨[J].煤炭学报,2011,36(6):978-983.LIU Mingju,LI Guoqi,HANI Mitri,et al.Genesis modes discussion of H2S gas in coal mines[J].Journal of China Coal Society,2011,36(6):978-983.
    [11]唐跃刚,贺鑫,程爱国,等.中国煤中硫含量分布特征及其沉积控制[J].煤炭学报,2015,40(9):1977-1988.TANG Yuegang,HE Xin,CHENG Aiguo,et al.Occurrence and sedimentary control of sulfur in coals of China[J].Journal of China Coal Society,2015,40(9):1977-1988.
    [12]兰建义,乔美英,周英.基于灰色系统理论的煤矿人因事故关键因素分析[J].中国安全生产科学技术,2015(2):178-185.LAN Jianyi,QIAO Meiying,ZHOU Ying.Analysis on critical factor of human error accidents in coal mine based on gray system theory[J].Journal of Safety Science and Technology,2015(2):178-185.
    [13]任贵红,张苗,谢飞,等.基于模糊数学和灰色关联分析的化工储罐区火灾风险评估研究[J].中国安全生产科学技术,2013(2):105-111.REN Guihong,ZHANG Miao,XIE Fei,et al.Study onfire risk assessment of chemical storage tank area based on fuzzy mathematics and grey relational analysis[J].Journal of Safety Science and Technology,2013(2):105-111.
    [14]曹树刚,徐阿猛,刘延保,等.基于灰色关联分析的煤矿安全综合评价[J].采矿与安全工程学报,2007(2):141-145.CAO Shugang,XU Ameng,LIU Yanbao,et al.Comprehensive assessment of security in coal mines based on grey relevance aanalysis[J].Journal of Mining&Safety Engineering,2007(2):141-145.
    [15]孙友良,闫滨,赵波,等.基于改进广义灰色关联分析法的水闸安全评价指标的选取[J].水电能源科学,2014(4):102-105.SUN Youliang,YAN Bin,ZHAO Bo,et al.Selection ofsafety evaluation index for sluice based on improved generalized gray relational analysis[J].Water Resourcesand Power,2014(4):102-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700