滇东南矿集区地球化学致矿信息提取
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Combination of multivariate statistical analysis and BEMD method for geo-chemical anomalies identification in the Southeastern Yunnan metallogenic district,China
  • 作者:黄静宁 ; 赵鹏大 ; 陈永清 ; 卢映祥 ; 童祥 ; 武俊德 ; 莫国培
  • 英文作者:HUANG Jing-ning;ZHAO Peng-da;CHEN Yong-qing;LU Ying-xiang;TONG Xiang;WU Jun-de;MO Guo-pei;The Geological Museum of China;China University of Geosciences of China(Beijing);Yunnan Geological Survey;Yunnan Tin Company Limited;
  • 关键词:因子分析 ; BEMD ; 致矿异常 ; 滇东南
  • 英文关键词:factor analysis;;Bi-dimensional empirical mode decomposition;;Ore-forming anomalies;;Identification;;Southeastern Yunnan
  • 中文刊名:YSJS
  • 英文刊名:Mineral Exploration
  • 机构:中国地质博物馆;中国地质大学(北京);云南省地质调查局;云南锡业股份有限公司;
  • 出版日期:2018-11-28
  • 出版单位:矿产勘查
  • 年:2018
  • 期:v.9;No.59
  • 基金:北京市优秀博士学位论文指导教师科技项目(编号:20111141502);; 国家自然科学基金(编号:41672329);; 中国地质博物馆部门预算课题(编号:121113000000170404-8)联合资助
  • 语种:中文;
  • 页:YSJS201811026
  • 页数:13
  • CN:11
  • ISSN:11-5875/TD
  • 分类号:191-203
摘要
从复杂的地球化学场中识别不同级次的地球化学特征,结合区域地质背景和地质成矿事件解释异常,发现隐含在复杂地球化学场中的致矿地质异常特征和控矿地质异常特征,能够为成矿预测提供有效线索。文章尝试将传统的因子分析与非线性二维经验模分解技术(BEMD)相结合,以滇东南1∶20万区域地球化学数据为例,应用因子分析揭示滇东南矿集区的成矿背景和致矿异常元素组合及其空间分布特征,并应用BEMD方法进行分解滇东南矿集区成矿有利的因子组合,实现深层次致矿异常信息的提取,研究表明:(1)多元统计及因子分析结果揭示了区域成矿有利特征及两种主要的成矿元素组合:以Sn-Cu和PbZn-Ag等高—中—低温热液叠加矿化元素组合和以W-Be-Bi为主的一组典型中高温深成热液成矿元素组合;(2) BEMD方法的应用使得因子分析结果得到精细化逐级分解,经BEMD方法分解得到因子组合1的IMF1分量和因子组合3的IMF2分量反映了由规模相对较小(或埋藏较浅)的地质体引起的相对高频元素组合异常,因子组合1的IMF3分量和因子组合3的IMF3分量反映了由规模相对较大(或埋藏较深)的地质体引起的相对低频元素组合异常,其中因子组合1的IMF3分量的高值区在空间上与已知矿床对应程度较高,因子组合3的IMF3分量高值区为进一步找寻Sn-Cu多金属矿床的远景地段;(3) BEMD方法分解得到因子组合1和因子组合3的Res剩余分量则代表了由规模最大的深埋的地质体引起的低频元素组合异常,指明了个旧超大型Sn-Cu多金属矿床的成矿物质来源。
        By combining with the regional geological background and ore-forming events,decomposing the geochemical anomalies in different level from complex geochemical field,anomalies associated with mineralization andore-controllinganomalieswere discoveried in complex geochemical field,which is valuable for mineral resources prediction. The factor analysis and Bi-dimensional empirical mode decomposition( BEMD) method are combined in this study,and then applied for geochemical anomalies identification of Southeastern Yunnan metallogenic district. Firstly,the factor analysis results yield the element associations revealed the regional oreforming background and the regional spatial variability of the ore-forming elements. Then,the BEMD method is applied to decomposing the element associations which are favorable for mineralization and to extracting conceal ore-forming anomalous information. The studied results show as follows:( 1) The results of multi-statistical analysis and factor analysis illustrate combination of two main mineralization elmentson regional scale. One factor involves Sn-Cu and Pb-Zn-Ag which characterized the high-low-middle temperature hydrothermal mineralization effect,and the other one involves W-Be-Bi which characterized the middle-high temperature and deep hydrothermal mineralization effect.( 2) The BEMD method is applied to decompose the factor analysis results into several components to obtain the geoanomalies information associated with mineralization in different level. The intrinsic mode function( IMF) 1 decomposed from factor association( FA) 1 and the IMF2 decomposed from FA3 respectively revealed the high-frequency elements associated anomalies which related to small-size or shallow geological body. Meanwhile,the IMF3 s decomposed from FA1 and FA3 revealed the low-frequency elements associated anomalies which may be related to big-size or deep buried geological body. These low-frequency anomalies of IMF3 s from FA1 spatially coincide with the known deposits such as Songshujiao et al,and the anomaly areas shown IMF3 s from FA3 may be the prospecting area of Sn-Cu deposit.( 3) The residual components of FA1 and FA3 decomposed by BEMD method may revealed the low-frequency anomalies associated with the deep buried and the biggest geological body in study area,which may be the mineralization source of the Gejiu super-large Sn-Cu deposits.
引文
Agterberg F.2007.New applications of the model of de Wijs in regional geochemistry[J].Math Geol,2007,39(1):1-25.
    Agterberg F.2014.Geomathematics:Theoretical foundations,applications and future developments[M].Germany:Springer International Publishing,1-553.
    Agterberg F.2017.Pareto-Lognormal modeling of known and unknown metal resources[J].Nat Resour Res,26(1):3-20.
    B9lviken B,Stokke P R,Feder J et al.1992.The fractal nature of geochemical landscapes[J].J Geochem Explor,43:91-109.
    Chen Y Q,Zhang L N,Zhao B B.2017.Application of Bi-dimensional empirical mode decomposition(BEMD)modeling for extracting gravity anomaly indicating the ore-controllinggeological architectures and granites in the Gejiu tin-copper polymetallicore field,southwestern China[J].Ore Geol Rev,88:832-840.
    Cheng Q M.2008.No-linear theory and power-low models for information integration and mineral resources quantitative assessments[J].Math Geosci,40(5):503-532.
    Cheng Yanbo,Mao Jingwen.2010.Age and geochemistry of granites in Gejiu area,Yunnan province,SW China:Constraints on their petrogenesis and tectonic setting[J].Lithos,120:258-276.
    Davis J C,2002.Statistical and data analysis in geology[M].John Wiley&Sons.656.
    Flandrin P,Rilling G,Goncalves P.2004.Empirical mode decomposition as a filter bank[J].Signal Processing Letters,IEEE,11(2):112-114.
    Hassan H H,Peirce J W.2008.Empirical mode decomposition(EMD)of potential field data:airborne gravity data as an example[J].CSEG RECORDER,25-30.
    Huang J N,Zhao B B,Chen Y Q,et al.2010.Bidimensional empirical mode decomposition(BEMD)for extraction of gravity anomalies with gold mineralization in the Tongshi gold field,Western Shandong uplifted block,Eastern China[J].Comp Geosci,36(7):987-995.
    Huang N E.2006.Beyond the fourier transform:coping with nonlinear,nonstationary time seriers[EB/OL].www.Physiconet.org/events/hrv-2006/huang.pdf.
    Huang N E,Chern C C,Huang Kang,et al.2001.A new spectral representation of earthquake data:Hilbert spectral analysis of station Tcu129,Chi-Chi,Taiwan,21 September[C].Bulletim of the Seismological of Seismol Soc,91(5):1310-1338.
    Huang N E,Shen Z,Long S R,et al.1998.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].P Roy Soc A-Math Phy,454(1971):903-995.
    Lovejoy S,Schertzer D,Gagnon J S.2005.Multifracal simulation of the Earth’s surface and interior:anisotropic singularities and morphology[C].Proceeding of IAMG’2005:GIS and Spatial Analysis(Editors:Qiuming Cheng,et al),V1:37-54.
    Nunes J C,Bouaoune Y,Delechelle E,et al.2003.Image analysis by bi-dimensional empirical mode decomposition[J].Image Vision Comput,21:1019-1026.
    Nunes J C,Guyot S,Delechelle E.2005.Texture analysis based on local analysis ofthe Bidimensional Empirical Mode Decomposition[J].Mach Vision Appl,16:177-188.
    Paul D A.2004.Applications of geochemistry in targeting with emphasis on large stream and lake sediment data complications[C].SEGConference,Sydney.
    Vistelius A B.1960.The skew frequency distributions and the fundamental law of thegeochemical processes[J].J Geol,68,1-22.
    Wedepohl K H.1995.The composition of the continental crust[J].Geochim Cosmochim Ac,59(7):1217-1232.
    陈守余,赵鹏大,张寿庭,等.2009.个旧超大型锡铜多金属矿床成矿多样性与深部找矿[J].地球科学---中国地质大学学报,34(2):319-324.
    成秋明.2007.成矿过程奇异性与矿产预测定量化的新理论与新方法[J].地学前缘,14(5):42-53.
    成秋明,赵鹏大,陈建国,等.2009.奇异性理论在个旧锡铜矿产资源预测中的应用:成矿弱信息提取和复合信息分解[J].地球科学---中国地质大学学报,34(2):232-242.
    程彦博,毛景文,陈小林,等.2010a.滇东南薄竹山花岗岩的LA-ICP-MS锆石U-Pb定年及地质意义[J].吉林大学学报(地球科学版),40(4):869-878.
    程彦博,毛景文,谢桂青,等.2009.与云南个旧超大型锡矿床有关的花岗岩锆石U-Pb定年及意义[J].矿床地质,28(3):297-312.
    程彦博,童祥,武俊德,等.2010b.华南西部地区晚中生代与W-Sn矿有关花岗岩的年代学格架及地质意义[J].岩石学报,26(3):809-818.
    程志中.2007.西南地区76种元素地球化学图与成矿预测研究[R].中国地质大学(北京).博士后出站报告,1-167.
    程志中,谢学锦,潘含江,等.2011.中国南方地区水系沉积物中元素丰度[J].地学前缘,18(5):289-295.
    范承钧,秦德厚.1993.云南省区域地质矿产概论.见:张翼飞编.云南省区域矿产总结[M].昆明:云南省地质矿产局:13-80.
    菅贞贞,陈永清,赵彬彬.2012.应用二维经验模分解(BEMD)法提取滇东Pt、Pd元素地球化学异常[J].地质通报,31(5):799-806.
    李庆谋,成秋明.2004.分形奇异(特征)值分解方法与地球物理和地球化学异常重建[J].地球科学---中国地质大学报,29(1):109-118.
    毛景文,程彦博,郭春丽,等.2008.云南个旧锡矿田:矿床模型及若干问题讨论[J].地质学报,82(11):1456-1468.
    莫国培.2006.个旧超大型锡多金属矿区花岗岩成因类型[J].矿产与地质,20(4-5):413-417.
    沈滨,崔峰,彭思龙.2005.二维EMD的纹理分析及图像瞬时频率估计[J].计算机设计与图形学学报,17(10):2345-2352.
    涂光炽.2002.我国西南地区两个别具一格的成矿带(域)[J].矿物岩石地球化学通报,21(1):1-2.
    杨宗喜,毛景文,陈憋弘,等.2008.云南个旧卡房矽卡岩型铜(锡)矿Re-Os年龄及其地质意义[J].岩石学报,24(8):1937-1944.
    於崇文.2006.矿床在混沌边缘分形生长(下)[M].合肥:安徽教育出版社:1-724.
    张洪培.2007.云南蒙自白牛厂银多金属矿床-与花岗质岩浆作用有关的超大型矿床[D].长沙:中南大学:1-97.
    张洪培,刘继顺,李晓波,等.2006.滇东南花岗岩与锡、银、铜、铅、锌多金属矿床的成因关系[J].地质找矿论丛,21(2):87-90.
    赵鹏大.2012a数字地质与矿产资源评价[J].地质学刊,36(3):225-228.
    赵鹏大.2012b.我国锡都个旧市可持续发展的前景与实现[J].资源与产业,14(2):1-2.
    赵鹏大.2015.大数据时代数字找矿与定量评价[J].地质通报,34(7):1255-1259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700