镀镍石墨/铝复合材料界面和摩擦摩损性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Interface and Friction-wear Properties of Nickel Coated Graphite/Aluminum Composite
  • 作者:刘杰 ; 潘晓涛 ; 曾国勋 ; 程永奇 ; 王剑
  • 英文作者:LIU Jie;PAN Xiaotao;ZENG Guoxun;CHENG Yongqi;WANG Jian;Materials and Energy Engineering,Guangdong University of Technology;
  • 关键词:Gr-ZL105复合材料 ; 粉末冶金法 ; 界面 ; 维氏硬度 ; 摩擦系数 ; 粘着磨损
  • 英文关键词:Gr-ZL105 composite;;powder metallurgy;;interface;;Vickers hardness;;friction coefficient;;adhesive wear
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:广东工业大学材料与能源学院;
  • 出版日期:2017-03-27 11:34
  • 出版单位:热加工工艺
  • 年:2017
  • 期:v.46;No.460
  • 语种:中文;
  • 页:SJGY201706042
  • 页数:5
  • CN:06
  • ISSN:61-1133/TG
  • 分类号:148-151+155
摘要
采用粉末冶金法制备了25%Gr的Gr-ZL105复合材料。通过对石墨表面进行镀镍,研究了镀镍Gr-ZL105复合材料的界面及其摩擦磨损性能,并与不镀镍Gr-ZL105复合材料进行对比。结果表明,采用石墨表面镀镍法可有效改善石墨铝复合材料的界面相容性,界面产生了Al_3Ni,且镀层起到了阻挡层的作用,改善了脆性界面的力学性能。烧结后材料的硬度提高,维氏硬度可达123.02 HV,得到组织致密、晶粒细小的复合材料。在相同载荷、转速下,改性复合材料的摩擦系数为0.207,比不改性复合材料摩擦系数高。
        Gr-ZL105 composite with 25%Gr was prepared by powder metallurgy method. The interface and the friction and wear properties of nickel-plated Gr-ZL105 composite were investigated by nickel plating on the surface of graphite, which were compared with those of non-nickel-plated Gr-ZL105 composite. The results show that the interfacial compatibility of graphite aluminum composite can be improved by nickel plating on the graphite surface. The interface produces Al_3Ni, and the coating acts as a barrier and improves the mechanical properties of brittle interface. The hardness of the sintered material improves, which can reach 123.02 HV, and then the composite with compact structure and fine grain can be obtained. The friction coefficient of the modified composite is 0.207 under the same load and rotational speed, which is higher than that of unmodified composite.
引文
[1]张文毓.硬质合金涂层刀具研究进展[J].稀有金属与硬质合金,2008,36(1):59-63.
    [2]樊建中,石力开.颗粒增强铝基复合材料研究与应用发展[J].宇航材料工艺,2012,42(1):1-7.
    [3]董志国.石墨/铝复合材料的制备及性能研究[D].沈阳:东北大学,2008.
    [4]刘振刚.新型石墨颗粒/铝合金复合自润滑轴瓦材料的研究[D].沈阳:东北大学,2009.
    [5]刘怀喜,高琳,马润香.新型活塞材料的研究[J].热加工工艺,2011,40(4):90-91.
    [6]冯科.铝基复合材料的制备工艺及性能研究[D].河南:河南科技大学,2012.
    [7]高云飞,郭立江,王文广,等.碳纳米管增强2024A1基复合材料的组织与性能[J].热加工工艺,2015,44(22):1-5.
    [8]陈振华.现代粉末冶金技术[M].化学工业出版社,2013.
    [9]姜魁光.天然鳞片石墨表面化学镀铜工艺的研究[D].青岛:中国海洋大学,2009.
    [10]夏存娟.涂层碳纤维镁基复合材料的界面控制[D].上海:上海交通大学,2013.
    [11]李明伟.颗粒增强铝基复合材料的研究与应用[J].热加工工艺,2009,38(8):69-72.
    [12]汤成建,孔德军.阴极弧离子镀Ti Al Si N涂层表面-界面能谱分析与结合强度[J].材料热处理学报,2016,37(3):166-170.
    [13]Dorner-Reisel A,Nishida Y,Klemm V,et al.Investigation of interfacial interaction between uncoated and coated carbon fibres and the magnesium alloy AZ91[J].Analytical&Bioanalytical Chemistry,2002,374(4):635-638.
    [14]李建明.磨损金属学[M].北京:冶金工业出版社,1990.
    [15]机械工程手册.机械工程手册第22篇摩擦、磨损与润滑[M].北京:机械工业出版社,1978.
    [16]Lu B,Luo J,Chiovelli S.Corrosion and wear resistance of chrome white irons-A correlation to their composition and microstructure[J].Metallurgical&Materials Transactions A,2006,37(10):3029-3038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700