MFC-MEC耦合系统产电性能及处理含镉重金属废水的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrical performance of MFC-MEC coupling system and treatment of heavy metal wastewater containing cadmium
  • 作者:潘璐 ; 吴丹菁 ; 刘维平
  • 英文作者:PAN Lulu;WU Danjing;LIU Weiping;Department of Environmental Engineering, Jiangsu University of Technology;
  • 关键词:生物反应器 ; 耦合系统 ; 电性能 ; 废水 ; 还原 ; 沉积物
  • 英文关键词:bioreactors;;coupling system;;electrical performance;;waste water;;reduction;;deposition
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:江苏理工学院环境工程系;
  • 出版日期:2018-10-29 16:45
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:江苏省自然科学基金项目(BK20131133);; 常州市科技计划(国际科技合作)项目(CZ20170020);; 江苏省研究生实践创新计划项目(SJCX17-0776)
  • 语种:中文;
  • 页:HGSZ201901028
  • 页数:9
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:252-260
摘要
以厌氧活性污泥为阳极菌种,乙酸钠为阳极底物,硫酸铜和重铬酸钾溶液为微生物燃料电池(MFC)阴极液,人工模拟含镉重金属废水为微生物电解池(MEC)阴极液,构建MFC-MEC耦合系统,利用MFC的产电驱动MEC运行,在不消耗外部能源的情况下,实现含镉重金属废水中Cd~(2+)的去除。实验研究了MFC反应器容积、MFC堆栈、MEC电极材料、MEC阴极液pH对MFC-MEC耦合系统电性能及含镉重金属废水处理效果的影响。结果表明:MFC反应容积的扩大可以提高其产电性能,但与此同时会造成MFC的内阻升高,随着MFC容积的增加,MEC中Cd~(2+)去除率逐渐增加,但同时MFC阴极Cr6+去除率逐渐下降;MFC堆栈可以提高工作组两端电压,串联时最大输出电压为1509 mV,Cd~(2+)去除率为69.3%;以钛板作为MEC电极时,微生物能有效附着在阳极表面,MFC阳极COD去除率为85%,MEC中Cd~(2+)去除率为51.5%;MEC阴极液pH在3~5时,有利于含镉重金属废水的处理,Cd~(2+)去除率80%以上。经XRD分析,MEC阴极还原产物为CdCO3。
        The MFC-MEC coupling system was constructed by using anaerobic activated sludge as the anode species, sodium acetate simulated wastewater as the anode substrate, copper sulfate and potassium dichromate solutions as the microbial fuel cell(MFC) catholyte, artificially simulate heavy metal wastewater containing cadmium as microbial electrolytic cell(MEC) catholyte. The MFC was used to drive the MEC to realize the removalof Cd~(2+)in heavy metal wastewater containing cadmium. The effects of the MFC reactor volume, MFC stack, MECelectrode material, MEC catholyte pH on the electrical properties of the MFC-MEC coupled system and thetreatment of heavy metal wastewater containing cadmium were investigated. The results show that the enlargementof MFC reaction volume could improve the electricity production performance, but at the same time it would alsoincrease the internal resistance of MFC. With the increase of MFC volume, the removal rate of Cd~(2+)in MECincreased gradually, but at the same time, the removal rate of Cr6+in MFC cathode decreased gradually; MFC stackcould increase the voltage, the maximum output voltage was 1509 mV in series, and the removal rate of Cd~(2+)was69.3%; when the titanium plate was used as the MEC electrode, the microorganism could effectively adhere to theanode surface, the removal rate of COD of the MFC anode was 85%, the removal rate of Cd~(2+)in the MEC was 51.5%;when the pH of MEC catholyte was 3—5, it was beneficial to the treatment of heavy metal wastewater containingcadmium, and the removal rate of Cd~(2+)was over 80%. By XRD analysis, the cathode reduction product of MEC isCdCO3.
引文
[1] Kumbasar R A. Extraction of cadmium from solutions containing various heavy metal ions by Amberlite LA-2[J]. Journal of Industrial&Engineering Chemistry, 2010, 16(2):207-213.
    [2] Chen H, Zhong C, Berkhouse H, et al. Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater[J]. Chemosphere, 2016, 155:163-169.
    [3] Bhatluri K K, Manna M S, Ghoshal A K, et al. Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition[J].Electrochimica Acta, 2017, 229:1-7.
    [4] Awual M R, Khraisheh M, Alharthi N H, et al. Efficient detection and adsorption of cadmium(Ⅱ)ions using innovative nanocomposite materials[J]. Chemical Engineering Journal, 2018, 343:118-127.
    [5] Yaacoubi H, Zidani O, Mouflih M, et al. Removal of cadmium from water using natural phosphate as adsorbent[J]. Procedia Engineering, 2014, 83:386-393.
    [6] Hokkanen S, Repo E, Suopaj?rvi T, et al. Adsorption of Ni(II),Cu(II)and Cd(II)from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014, 21(3):1471-1487.
    [7] Hadavifar M, Bahramifar N, Younesi H, et al. Removal of mercury(II)and cadmium(II)ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016,67:397-405.
    [8] He J, Li Y, Wang C, et al. Rapid adsorption of Pb, Cu and Cd from aqueous solutions byβ-cyclodextrin polymers[J]. Applied Surface Science, 2017, 426:29-39.
    [9] Bhunia P, Chatterjee S, Rudra P, et al. Chelating polyacrylonitrile beads for removal of lead and cadmium from wastewater[J].Separation&Purification Technology, 2017, 193:202-213.
    [10] Arends J B A, Verstraete W. 100 years of microbial electricity production:three concepts for the future[J]. Microbial Biotechnology, 2012, 5(3):333-346.
    [11] Wu X, Zhu X, Song T, et al. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell[J]. Bioresource Technology, 2015, 180:185-191.
    [12] Gangadharan P, Nambi I M. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell[J].Water Science&Technology A Journal of the International Association on Water Pollution Research, 2015, 71(3):353-8.
    [13] Qin B, Luo H, Liu G, et al. Nickel ion removal from wastewater using the microbial electrolysis cell[J]. Bioresour. Technol., 2012,121(2):458-461.
    [14] Luo H P, Liu G L, Zhang R D, et al. Heavy metal recovery combined with H2production from artificial acid mine drainage using the microbial electrolysis cell[J]. Journal of Hazardous Materials, 2014, 270(7):153-159.
    [15] Cai W F, Fang X W, Xu M X, et al. Sequential recovery of copper and nickel from wastewater without net energy input[J]. Water Science&Technology, 2015, 71(5):754-760.
    [16] Choi C, Hu N X, Lim B S. Cadmium recovery by coupling double microbial fuel cells[J]. Bioresource Technology, 2014, 170:361-369.
    [17] Shen J Y, Sun Y L, Huang L P, et al. Microbial electrolysis cells with bio-cathodes and driven by microbial fuel cells for simultaneous enhanced Co(II)and Cu(II)removal[J]. Frontiers of Environmental Science&Engineering, 2015, 9(6):1084-1095.
    [18] Zhang Y, Yu L, Wu D, et al. Dependency of simultaneous Cr(VI),Cu(II)and Cd(II)reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells[J]. Journal of Power Sources, 2015, 273:1103-1113.
    [19] Luo H P, Qin B Y, Zhang G L, et al. Selective recovery of and from wastewater using bioelectrochemical system[J]. Frontiers of Environmental Science&Engineering, 2015, 9(30):522-527.
    [20]孙彩玉,邸雪颖,秦必达,等.微生物燃料电池耦合处理重金属-有机废水性能研究[J].太阳能学报, 2015, 36(8):1921-1926.Sun C Y, Di X Y, Qin B D, et al. Performance of microbial fuel cell coupled processing heavy metal wasterwater-organic wastewater[J]. Acta Energiae Solaris Sinica, 2015, 36(8):1921-1926.
    [21]梁鹏,范明志,曹效鑫,等.微生物燃料电池表观内阻的构成和测量[J].环境科学, 2007, 28(8):1894-1898.Liang P, Fan M Z, Cao X X, et al. Composition and measurement of the apparent internal resistance in microbial fuel cell[J].Environmental Science, 2007, 28(8):1894-1898.
    [22]谢静怡,李永峰,郑阳.环境生物电化学原理与应用[M].哈尔滨:哈尔滨工业大学出版社, 2014:36-41.Xie J Y, Li Y F, Zheng Y. Principles and Applications of Environmental Bioelectrochemistry[M]. Harbin:Harbin Institute of Technology Press, 2014:36-41.
    [23]徐功娣,李旭峰,张永娟.微生物燃料电池与应用[M].哈尔滨:哈尔滨工业大学出版社, 2012:150-152.Xu G D, Li X F, Zhang Y J. Microbial Fuel Cell and Application[M]. Harbin:Harbin Institute of Technology Press, 2012:150-152.
    [24]许丹,肖恩荣,徐栋,等.微生物燃料电池与人工湿地耦合系统研究进展[J].化工学报, 2015, 66(7):2370-2376.Xu D, Xiao E R, Xu D, et al. Embedding microbial fuel cell into constructed wetland systems for electricity production and wastewater treatment:state-of-the-art[J]. CIESC Journal, 2015,66(7):2370-2376.
    [25]孔晓英,李连华,李颖,等.葡萄糖浓度对微生物燃料电池产电性能的影响[J].太阳能学报, 2013, 34(2):349-352.Kong X Y, Li L H, Li Y, et al. Effect of glucose concentration on power generation performance of microbial fuel cells[J]. Acta Energiae Solaris Sinica, 2013, 34(2):349-352.
    [26] Zhou M, Chi M, Luo J, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10):4427-4435.
    [27]王辉,李蕾,曹羡,等.土壤微生物燃料电池在不同条件下的产电性能及微生物群落结构分析[J].东南大学学报(自然科学版), 2017, 47(6):1141-1147.Wang H, Li L, Cao X, et al. Performance of soil microbial fuel cells under different conditions and analysis on associated microbial communities[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(6):1141-1147.
    [28] Margaria V, Tommasi T, Pentassuglia S, et al. Effects of pH variations on anodic marine consortia in a dual chamber microbial fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(3):1820-1829.
    [29] Mani P, Keshavarz T, Chandra T S, et al. Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode:influence of mitigating pH changes in the cathode chamber[J].Enzyme&Microbial Technology, 2017, 96:170-176.
    [30]张培远,刘中良,侯俊先.外阻对微生物燃料电池性能的影响[J].工程热物理学报, 2012, 33(10):1777-1780.Zhang P Y, Liu Z L, Hou J X. Influence of external resistance on the performance of microbial fuel cells[J]. Journal of Engineering Thermophysics, 2012, 33(10):1777-1780.
    [31] Colantonio N, Kim Y. Cadmium(Ⅱ)removal mechanisms in microbial electrolysis cells[J]. Journal of Hazardous Materials,2016, 311:134-141.
    [32] Aelterman P, Rabaey K, Pham H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental Science&Technology, 2006, 40(10):3388-3394.
    [33] Gurung A, Oh S E. The improvement of power output from stacked microbial fuel cells(MFCs)[J]. Energy Sources, 2012, 34(17):1569-1576.
    [34] Wu D, Pan Y, Huang L P, et al. Comparison of Co(II)reduction on three different cathodes of microbial electrolysis cells driven by Cu(II)-reduced microbial fuel cells under various cathode volume conditions[J]. Chemical Engineering Journal, 2015, 266:121-132.
    [35]李辉,方正.驯化期外电路对微生物燃料电池的影响[J].华中科技大学学报(自然科学版), 2013, 41(11):32-36.Li H, Fang Z. Effect of external circuits on microbial fuel cell during acclimated period[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2013, 41(11):32-36.
    [36] Zhuang L, Zhou S, Li Y, et al. Enhanced performance of aircathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode[J]. Bioresource Technology, 2010, 101(10):3514-3519.
    [37]张勇.堆砌式自驱动MFC-MEC系统回收多金属[D].大连:大连理工大学, 2014.Zhang Y. Multiple metals recovery in stackable self-driven MFCMEC systems[D]. Dalian:Dalian University of Technology, 2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700