超级电容器用MnO_2基复合电极材料研究现状与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Situation and Development of MnO_2-based Composite Electrode Materials for Supercapacitors
  • 作者:陈俊明 ; 鲍菊生 ; 王桂玲 ; 刘翠翠 ; 姚悦 ; 过家好 ; 汪徐春 ; 井凤阳
  • 英文作者:CHEN Jun-ming;BAO Ju-sheng;WANG Gui-ling;LIU Cui-cui;YAO Yue;GUO Jia-hao;WANG Xu-chun;JING Feng-yang;College of Chemical and Materials Engineering,University of Science and Technology of Anhui;College of Environmental and Chemical Engineering,Yanshan University;
  • 关键词:超级电容器 ; MnO2纳米材料 ; 核壳结构
  • 英文关键词:supercapacitor;;MnO2 nanomaterial;;core-shell structure
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:安徽科技学院化学与材料工程学院;燕山大学环境与化学工程学院;
  • 出版日期:2019-06-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.248
  • 基金:安徽省人才基金(gxfx ZD2016176);; 材料科学与工程重点学科(AKZDXK2015A01);; 安徽省科技重大专项基金(18030901087);; 安徽科技学院大学生创新创业训练计划项目(201710879011);; 安徽省自然科学基金(1808085MB31);; 高校优秀青年骨干人才国内访问研修项目(gxgnfx2018019)
  • 语种:中文;
  • 页:RGJT201906002
  • 页数:5
  • CN:06
  • ISSN:11-2637/O7
  • 分类号:16-20
摘要
超级电容器因其功率密度高、环保性能优异等特点引起人们的兴趣。二氧化锰具有天然含量丰富、绿色环保、高比容量和晶体结构多样性等优点,是一种优良的电极材料。但二氧化锰的导电性能差,工作过程中结构不稳定等缺点严重影响了其电化学性能。本文对本课题组和国内外学者多年来对MnO_2应用金属掺杂、硫化物、碳材料、导电聚合物复合、微观结构改性构建核壳结构等研究成果进行总结概括,并展望今后的工作研究方向和重点。
        Supercapacitors have attracted people's interest because of their ultra-high power density and excellent environmental performance. The manganese dioxide is an excellent electrode material. Due to it has the advantages of rich natural content,environmental protection,high specific capacity and crystal structure diversity. However,the MnO_2 has low conductivity and the structural instability during the working process seriously affects the electrochemical performance. This paper summarizes the research of the study group and scholars at home and abroad for metal doping,complex sulfide,carbon material and conductive polymer composite,microstructure modification and core-shell structure recent years,and looks forward to the future research work direction and focus.
引文
[1] Liu C,Li F,Ma L P,et al. Advanced materials for energy storage[J]. Adv. Mater,2010,22:E28-62.
    [2] Frackowiak E,Machnikowski J,Béguin F. Novel Carbonaceous Materials for Application in the Electrochemical Supercapacitors[J]. Nato Science,2006,229:5-20.
    [3] Simon P,Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854.
    [4] Zhu Y,Murali S,Stoller M D,et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541.
    [5] Wu Q,Xu Y,Yao Z,et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. Acs Nano,2010,4(4):1963-1970.
    [6] Choudhary N,Li C,Moore J,et al. Asymmetric Supercapacitor Electrodes and Devices[J]. Advanced Materials,2017,29(21):1605336.
    [7] Liu K,Anderson M A. Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors[J]. Mrs Online Proceedings Library Archive,1996,393(1):124-130.
    [8] Wang G,Zhang L,Zhang J. ChemInform Abstract:A Review of Electrode Materials for Electrochemical Supercapacitors[J]. Cheminform,2012,41(2):797-828.
    [9] Zhi M,Xiang C,Li J,et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors:a review[J]. Nanoscale,2013,5(1):72-88.
    [10] Liu J,Jiang J,Cheng C,et al. Co3O4Nanowire@MnO2ultrathin nanosheet core/shell arrays:a new class of high-performance pseudocapacitive materials[J]. Advanced Materials,2011,23(18):2076-2081.
    [11] Lee H Y,Goodenough J B. Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry,1999,144(1):220-223.
    [12] And S D,Munichandraiah N. Effect of Crystallographic Structure of MnO2on Its Electrochemical Capacitance Properties[J]. Journal of Physical Chemistry C,2008,112(11):4406-4417.
    [13] Xia X,Tu J,Zhang Y,et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage[J].Acs Nano,2012,6(6):5531-5538.
    [14] Ma Z P,Shao G J,Fan Y Q,et al. Fabrication of high-performance all-solid-state asymmetric supercapacitors based on stableα-MnO2@Ni Co2O4core-shell heterostructure and 3D-nanocage N-doped porous carbon[J]. Acs Sustainable Chemistry&Engineering,2017,5(6):4856-4868.
    [15] Ma Z P,Shao G J,Fan Y Q,et al. Construction of hierarchicalα-Mn O2nanowires@ultrathinδ-MnO2nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes[J]. Acs Applied Materials&Interfaces,2016,8(14):9050-9058.
    [16] Feng M Y,Zhang G,Du Q H,et al. Co3O4@MnO2,core shell arrays on nickel foam with excellent electrochemical performance for aqueous asymmetric supercapacitor[J]. Ionics,2017,23(7):1637-1643.
    [17] Zhang Y,Guo W W,Zheng T X,et al. Engineering Hierarchical Diatom@CuO@MnO2hybrid for High Performance Supercapacitor[J]. Applied Surface Science,2018,427:1158-1165.
    [18] Zhang S W,Yin B S,Liu C,et al. Self-assembling hierarchical Ni Co2O4/MnO2,nanosheets and MnO3/PPY core-shell heterostructured nanobelts for supercapacitor[J]. Chemical Engineering Journal,2017,312:296-305.
    [19] Fu Y,Gao X,Zha D,et al. Yolk-shell-structured MnO2microspheres with oxygen vacancies for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2018,6:1601-1611.
    [20] Liu T,Shao G,Ji M,et al. Synthesis of MnO2-graphene composites with enhanced supercapacitive performance via pulse electrodeposition under supergravity field[J]. Journal of Solid State Chemistry,2014,215(3):160-166.
    [21] Xiong Q,Zheng C,Chi H,et al. Reconstruction of Ti O2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrode.[J]. Nanotechnology,2017,28(5):055405.
    [22] Ghasemi S,Hosseini S R,Booretalari O. Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor[J]. Ultrasonics Sonochemistry,2018,40(Pt A):675-685.
    [23] Cakici M,Kakarla R R,Alonso-Marroquin F. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabriccoated with uniform coral-like MnO2,structured electrodes[J]. Chemical Engineering Journal,2017,309:151-158.
    [24] Wang L,Ouyang Y,Jiao X,et al. Polyaniline-assisted growth of MnO2,ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density[J]. Chemical Engineering Journal,2018,334:1-9.
    [25] Wang N,Zhao P,Liang K,et al. CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2,for high performance asymmetric supercapacitors[J]. Chemical Engineering Journal,2017,307:105-112.
    [26] Qin T,Liu B,Wen Y,et al. Freestanding flexible graphene foams@polypyrrole@MnO2electrodes for high-performance supercapacitors[J].Journal of Materials Chemistry A,2016,4(23):9196-9203.
    [27] Lu W J,Huang S Z,et al. Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes[J].Chinese Chemical Letters,2017,28(6):1324-1329.
    [28] Dong J,Lu G,Wu F,et al. Facile Synthesis of a Nitrogen-doped Graphene Flower-like MnO2,Nanocomposite and Its Application in Supercapacitors[J]. Applied Surface Science,2018,427:986-993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700