基于几何形态测量学的天蛾科成虫数字化分类
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Digital Classification of Sphingid Moths Adults (Lepidoptera: Sphingidae) Based on Geometric Morphometry
  • 作者:蔡小娜 ; 苏筱雨 ; 黄大庄 ; 沈佐锐
  • 英文作者:Cai Xiaona;Su Xiaoyu;Huang Dazhuang;Shen Zuorui;Department of Basic Courses, Hebei Finance University;College of Forestry, Hebei Agricultural University;IPMist Laboratory, China Agricultural University;
  • 关键词:天蛾 ; 前翅翅脉 ; 几何形态测量学 ; 分类鉴定 ; 森林昆虫
  • 英文关键词:Sphingidae species;;forewing veins;;geometric morphometry;;identification;;forest insect
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:河北金融学院基础课教学部;河北农业大学林学院;中国农业大学IPMist实验室;
  • 出版日期:2019-01-15
  • 出版单位:林业科学
  • 年:2019
  • 期:v.55
  • 基金:河北省高等学校科学技术研究项目(QN2017077);; 河北省林业科学技术研究项目(1507473);; 国家林业局948项目(2013-4-75)
  • 语种:中文;
  • 页:LYKE201901005
  • 页数:9
  • CN:01
  • ISSN:11-1908/S
  • 分类号:41-49
摘要
【目的】对天蛾科10种成虫的前翅进行几何形态测量学分析,探讨利用几何形态测量学实现天蛾科成虫数字化分类的可行性,为逐步实现蛾类昆虫的数字化分类提供新的形态学依据。【方法】首先,进行几何形态测量学分析:以天蛾右前翅为研究对象,按特定次序选取17个翅脉交点作为标记点,并获得坐标数据;对原始标记点坐标数据进行普氏叠加分析消除标本摆放位置、方向和大小等非形状因素等信息;对普氏叠加后的标记点数据进行相对扭曲分析,得到17个标记点对10种天蛾分类作用的大小。其次,对几何形态测量学分析所得数据进行多元统计分析:利用单因素方差分析对17个标记点的差异显著性进行检验,再对普氏叠加后的标记点数据进行主成分分析,然后利用前3个主成分进行判别分析。【结果】相对扭曲分析表明标记点2、4和5对于10种天蛾成虫的分类作用相对较大;单因素方差分析显示17个标记点均具有显著的差异,即标记点在种间是有显著差异的,可以用于本文10种天蛾成虫的分类鉴定;主成分分析的前3个主成分的累计贡献率为97.7%,可作为对10种天蛾成虫进行分类鉴定的变量;判别分析结果显示回归判别和交叉判别的准确率均为100%,实现对天蛾科10种成虫的分类鉴定。【结论】研究表明几何形态测量学可应用于天蛾成虫的数字化分类鉴定,可为未来进一步实现蛾类成虫的自动识别奠定基础。
        【Objective】 The present paper analyzed geometric morphology of 10 species of sphingid adults using geometric morphometric method to explore the feasibility of geometric morphometry on digital classification of sphingid moths for providing new morphological foundation on realizing digital classification of moths progressively.【Method】 In the first step, geometric morphometric analysis was carried out. Right forewings of 10 sphingid species were used as research objects and 17 intersections of wing veins were selected as landmarks according to specific order, and coordinate data were obtained. Procrustes superimposition was applied to data of the 17 landmarks to remove non-shape variation from the landmark coordinates such as placing location, direction and sizes; and further, relative warp analysis was used to the new landmark coordinates to obtain effects of 17 landmarks to the 10 sphingid species. In the second step, multivariate statistical analysis was applied to the data collected by geometric morphometric analysis. One-way variance analysis was used for significant test of difference of landmark coordinates firstly; then, principal component analysis of the Procrustes transformed data-set was implemented; at last, discriminant analysis was carried out on the first three components.【Result】 The result showed that Landmarks 2, 4 and 5 had relative large contributions on the classification of the 10 sphingid adult species according to relative warp analysis. All of the 17 landmarks had significant difference and could be used for the classification of those 10 Sphingidae adult species by using one-way variance analysis. The accumulated rate of contribution of three principal components of the principal component analysis reached 97.7%, which could be used as variables of the classification and identification of the 10 sphingid adult species. The accuracy of original and cross validation tests reached to 100% and 99.7%, respectively. Classification and identification of the 10 sphingid moths were realized.【Conclusion】 It was indicated that geometric morphometric analysis could be used to identify the sphingid adults accurately and would be useful in gradually realizing the automatic recognition of moths in the future.
引文
白明, 杨星科. 2007. 几何形态测量法在生物形态学研究中的应用. 昆虫知识, 44(1): 143-147.(Bai M, Yang X K. 2007. Application of geometric morphometrics in biological researches. Chinese Bulletin of Entomology, 44(1): 143-147. [in Chinese])
    白明, 杨星科, 李静, 等. 2014a. 几何形态学: 关于形态定量比较的科学计算工具. 科学通报, 59(10): 887-894.(Bai M, Yang X K, Li J, et al. 2014a. Geometric morphometrics, a super scientific computing tool in morphology comparison. Chin Sci Bull, 59(10): 887-894. [in Chinese])
    白明, 杨星科. 2014b. 三维几何形态学概述及其在昆虫学中的应用. 昆虫学报, 57(9): 1105-1111.(Bai M, Yang X K. 2014b. A review of three-dimensional (3D) geometric morphometrics and its application in entomology. Acta Entomologica Sinica, 57(9): 1105-1111. [in Chinese])
    白义, 戴董峰, 包克瓯, 等. 2015. 基于几何形态测量学的黄蜻翅的雌雄二态性研究. 应用昆虫学报, 52(2): 363-369.(Bai Y, Dai D F, Bao K O, et al. 2015. Using geometric morphometrics to quantify the sexual dimorphism of Pantala flavescens. Chinese Journal of Applied Entomology, 52(2): 363-369. [in Chinese])
    蔡小娜. 2013. 基于数字图像的主要蛾类害虫分类识别研究. 保定: 河北农业大学博士学位论文.(Cai X N. 2013. Classification research on moths based on digital images.Baoding: PhD thesis of Agricultural University of Hebei. [in Chinese])
    李荣荣, 李生才, 张虎芳. 2016. 几何形态测量学及其在半翅目中的研究进展. 山西农业大学学报:自然科学版, 36(4): 235-241.(Li R R, Li S C, Zhang H F. 2016. Geometric morphometrics and its advances in Hemiptera. J Shanxi Agric Univ:Natural Science Edition, 36(4): 235-241. [in Chinese])
    潘鹏亮, 杨红珍, 沈佐锐, 等. 2008. 翅脉的数学形态特征在蝴蝶分类鉴定中的应用研究. 昆虫分类学报, 30(2): 151-160.(Pan P L, Yang H Z, Shen Z R, et al. 2008. Research on applying vein feature for mathematical morphology in classification and identification of butterflies (Lepidoptera: Rhopalocera). Entomotaxonomia, 30(2): 151-160. [in Chinese])
    盛骤, 谢式千, 潘承毅. 2001. 概率论与数理统计. 北京: 高等教育出版社.(Sheng Z, Xie S Q, Pan C Y. 2001. Probability and mathematical statistics. Beijing: Higher Education Press. [in Chinese])
    佟一杰, 杨海东, 马德英, 等. 2016. 蜣螂后胸叉骨的几何形态学分析及其适应进化研究. 昆虫学报, 59(8): 871-879.(Tong Y J, Yang H D, Ma D Y, et al. 2016. Geometric morphometrics evaluation and adaptive evolution study of scarabaeine metendosternites. Acta Entomologica Sinica, 59(8): 871-879. [in Chinese])
    邢松, 张银运, 刘武. 2012. 周口店直立人3号与5号头骨形态特征对比及其演化速率所反映的群体隔离. 人类学学报, 31(3): 250-258.(Xing S, Zhang Y Y, Liu W. 2012. Morphological comparison of the ZKD 3 and 5 skulls and the probable population isolation as reflected by evolutionary rates. Acta Anthropologica Sinica, 31(3): 250-258. [in Chinese])
    闫宝荣. 2011. 基于几何形态测量学的蝎蛉科昆虫系统发育研究. 杨凌: 西北农林科技大学硕士学位论文.(Yan B R. 2011. Phylogeny of Panorpidae (Mecoptera) based on geometric morphometrics.Yangling: MS thesis of Northwest A&F University. [in Chinese])
    闫宝荣, 花保祯. 2010. 几何形态测量学及其在昆虫分类学和系统发育中的应用. 昆虫分类学报, 32(4): 313-320.(Yan B R, Hua B Z. 2010. Geometric morphometrics and its application in the systematics and phylogenetics of insects. Entomotaxonomia, 32(4): 313-320. [in Chinese])
    于秀林, 任雪松. 1999. 多元统计分析. 北京:中国统计出版社.(Yu X L, Ren X S. 1999. Multivariate statistical analysis. Beijing:China Statistics Press. [in Chinese])
    詹庆斌. 2014. 中国蚁蛉科翅几何形态学研究及其四属的分类修订. 北京: 中国农业大学博士学位论文.(Zhan Q B. 2014. Geometric morphometric analysis of wing shape in Chinese antlion and taxonomic review of four genera (Neuroptera, Myrmeleontidea). Beijing: PhD thesis of China Agricultural University[in Chinese])
    张蕾, 陈小琳, 侯新文, 等. 2011. 实蝇科果实蝇属昆虫数字图像自动识别系统的构建和测试. 昆虫学报, 54(2): 184-196.(Zhang L, Chen X L, Hou X W, et al. 2011. Construction and testing of automated fruit fly identification system-Bactrocera Macquart (Diptera: Tephritidae). Acta Entomologica Sinica, 54(2): 184-196. [in Chinese])
    张秀秀, 管德龙, 覃凯华, 等. 2017. 秦岭地区中华蜜蜂5个地理种群翅形态差异的几何形态测量学研究. 陕西师范大学学报:自然科学版, 45(2): 71-74.(Zhang X X, Guan D L, Qin K H, et al. 2017. Geometric morphometric analyses on the wing-shape variation in five Apis cerana cerana populations from Qinling Mountains. Journal of Shaanxi Normal University: Natural Science Edition, 45(2): 71-74. [in Chinese])
    张亚盟, 魏偏偏, 吴秀杰. 2016. 现代人头骨断面轮廓的性别鉴定-基于几何形态测量的研究. 人类学学报, 35(2): 172-180.(Zhang Y M, Wei P P, Wu X J. 2016. Sex determination of cross-sectional outlines in modern human skulls: A study based on geometric morphometrics. Acta Anthropologica Sinica, 35(2): 172-180. [in Chinese])
    周蜜, 崔娅铭, 邢松. 2016. 中国近代人群上颌前臼齿釉质-齿质连接面形状的三维几何形态测量. 人类学学报, 35(4): 585-597.(Zhou M, Cui Y M, Xing S. 2016. Analyzing enamel-dentine junction(EDJ) shape in recent Chinese upper premolars using 3D geometric morphometrics. Acta Anthropologica Sinica, 35(4): 585-597. [in Chinese])
    朱弘复, 王琳瑶. 1997. 中国动物志: 昆虫纲. 第十一卷, 鳞翅目: 天蛾科. 北京: 科学出版社.(Zhu H F, Wang L Y. 1997. China Fauna: Insecta. Volume 11, Lepidoptera: Sphingidae. Beijing:Science Press [in Chinese])
    Adams D C, Rohlf F J, Slice D E. 2004.Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool,71(1): 5-16.
    Adams D C, Rohlf F J, Slice D E. 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix, 24(1): 7-14.
    Baab K L, McNulty K P, Rohlf F J. 2012. The shape of human evolution:a geometric morphometrics perspective. Evol Anthropol, 21 (4):151-165.
    Bai M, Beutel R G, Song K Q, et al. 2012. Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Struct Dev,41(1): 505-513.
    Bookstein F L. 1991. Morphometric Tools for Landmark data: Geometry and Biology. Cambridge Univ Press, New York.
    Fureix C, Hausberger M, Seneque E, et al. 2011. Geometric morphometrics as a tool for improving the comparative study of behavioural postures. Naturwissenschaften, 98(7): 583-592.
    Gaston K J, O’Neill M A. 2004. Automated species identification:why not? Phil Trans R Soc Lond B, 359(1444): 655-667.
    Ge D Y, Chesters D, Gómez-Zurita J, et al. 2011. Anti-predator defense drives parallel morphological evolution in flea beetles. Proc Biol Sci, 278(1715): 2133-2141.
    Gutierrez B L, MacLeod N, Edgecombe G D. 2011. Detecting taxonomic signal in an under-utilised character system: geometric morphometrics of the forcipular coxae of Scutigeromorpha (Chilopoda). ZooKeys, 156(4): 49-66.
    Hernández L N, Barragán A R, Dupas S, et al. 2010. Wing shape variations in an invasive moth are related to sexual dimorphism and altitude. Bulletin of Entomological Research, 100(5): 529-541.
    Hübler N, Klass K D. 2013. The morphology of the metendosternite and the anterior abdominal venter in Chrysomelinae (Insecta: Coleoptera: Chrysomelidae). Arthropod Syst Phyl,71(1): 3-41.
    Kitthawee S, Rungsri N. 2011. Differentiation in wing shape in the Bactrocera tau (Walker) complex on a single fruit species of Thailand. ScienceAsia, 37(4): 308-313.
    Mitteroecker P, Gunz P. 2009. Advances in geometric morphometrics. Evolutionary Biology, 36(2): 235-247.
    Outomuro D, Adams D C, Johansson F. 2013. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach. BMC Evolutionary Biology, 13.[2017-05-12].http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-13-118.
    Rohlf F J. 1998a. TpsDig. Ecology and evolution, SUNY. New York: Stony Brook.[2016-08-25]. http://life.bio.sunysb.edu/morph.
    Rohlf F J. 1998b. TpsSuper. Ecology and evolution, SUNY. New York: Stony Brook.[2016-08-25]. http://life.bio.sunysb.edu/morph.
    Rohlf F J. 1999. Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification, 16(4): 197-223.
    Slice D E. 2007. Geometric morphometrics. Annu Rev Anthropol, 36(2): 261-281.
    Slice D E. 2001. Landmark coordinates aligned by procrustes analysis do not lie in Kendall’s shape space. Syst Biol, 50(1): 141-149.
    Zelditch M L, Swiderski D, Sheets H D. 2004. Geometric Morphometrics for Biologists: A Primer. New York and London: Elsevier Academic Press, 1-437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700