储热技术研究进展与趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances and prospects in thermal energy storage:A critical review
  • 作者:汪翔 ; 陈海生 ; 徐玉杰 ; 王亮 ; 胡珊
  • 英文作者:WANG Xiang;CHEN HaiSheng;XU YuJie;WANG Liang;HU Shan;Institute of Engineering Thermophysics, Chinese Academy of Sciences;
  • 关键词:储热 ; 显热 ; 潜热 ; 热化学
  • 英文关键词:thermal energy storage;;sensible heat;;latent heat;;thermochemical heat
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国科学院工程热物理研究所;
  • 出版日期:2017-05-30
  • 出版单位:科学通报
  • 年:2017
  • 期:v.62
  • 基金:国家自然科学基金联合基金(U1407205);; 国家重点基础研究发展计划(2015CB251302);; 国家国际科技合作专项(2014DFA60600);; 中国科学院可再生能源高效利用创新交叉团队项目资助
  • 语种:中文;
  • 页:KXTB201715006
  • 页数:9
  • CN:15
  • ISSN:11-1784/N
  • 分类号:54-62
摘要
储热最大的潜力就在于解决由于时间、空间或强度上的热能供给与需求间不匹配所带来的问题.储热技术的开发和利用能够有效提高能源综合利用水平,对太阳能热利用、电网调峰、工业节能和余热回收、建筑节能等领域都具有重要的应用价值.近年来,储热在基础研究和技术应用方面均受到了极大的关注.本文首先利用Thomson Reuters公司的检索平台Web of Science对显热、潜热及热化学3大类储热技术从2000~2015年的研究趋势进行统计,分析的结果显示在基础研究方面潜热储热是当前最受关注的储热技术,热化学储热的关注度居中,显热储热的关注度最小,这主要取决于3种储热技术的成熟度.其次,在广泛总结前人研究成果的基础上,对比了3类储热的主要技术特色,诸如储能密度、储能规模、储能周期、储能成本、优缺点、未来研究重点等,并指出各储热技术应用领域的选择与拓展应充分考虑其各自的技术特色.最后,对储热技术的最新进展进行重点分析,主要包括近5年来出现的以储热瓷与类离子液体为代表的潜热储热技术、钙基高温热化学储热技术、以及混合储热技术,详细阐述了这些储热技术的原理与发展潜力,旨在为新型储热系统的研究与应用提供详实的参考.
        Thermal energy storage is an indispensible technology for adjusting the instability and time discrepancy between supply and demand of energy. It is mainly utilized for intermittent occasion, such as solar energy, variable energy load, and excessive energy that would be wasted rather than effectively utilized if it cannot be stored. Due to their potential for efficiently improving the comprehensive utilization rate of energy, thermal energy storage systems are of growing importance within the energy awareness: solar thermal utilization, peak shaving, industrial energy saving and waste heat recovery, building energy conservation, energy internet construction and so on. Developing efficient and inexpensive thermal energy storage devices is as important as developing new sources of energy, thus, in the past several years the thermal energy storage techniques have attracted a great deal of attention from both fundamental research and technological applications. Usually, there are three different mechanisms for thermal energy storage techniques: the sensible heat storage, the latent heat storage and the themochemical heat storage. The scope of this review is to give an overview and further analysis on the research which has been done on these three kinds of thermal energy storage techniques, and this review will be beneficial for the researchers and engineers to develop more efficient and optimized thermal energy storage systems. On the one hand, the research trends of three kinds of thermal energy storage techniques from 2000 to 2015 are carefully analyzed in the present review by using the statistics functions within the Web of Science Platform managed by Thomson Reuters. The statistics results show that according to the trends on paper numbers of each thermal energy storage techniques within the whole statistics period, the latent heat storage currently can be concluded as the most popular thermal energy storage technique in terms of fundamental research, the sensible heat storage is classified as least concern because main sensible heat storage systems so far have been almost matured, and the thermochemical heat storage is attracting more and more attention from researchers. On the other hand, the main technical characteristics(such as, energy storage density, energy storage scale, energy storage period, energy storage cost, advantages of technology, disadvantages of technology, future research focus, technology maturity and so on) of three kinds of thermal energy storage techniques are systematically compared in the present review on the basis of summarizing the previous related research work, and the final compared results reveal that because the key features for each thermal energy storage technology are totally different, the selection and extension of application fields for one thermal energy storage technique cannot move forward without a full consideration of its own technical characteristics. Finally, the latest progress on the development of thermal energy storage technologies is further discussed. The technical principles of the recently developed novel thermal energy storage concepts, mainly including of new latent heat storage materials represented by heat-storage ceramics and ionic liquids, the calcium based high temperature thermochemical heat storage systems and hybrid thermal energy storage systems, are introduced in detail, moreover, the technical potential and future outlook of these new thermal energy storage concepts are also addressed.
引文
1 Hadorn J C.Advanced storage concepts for active solar energy-IEA SHC Task32 2003-2007.In:Proceedings of First International Conference on Solar Heating,Cooling and Building.Lisbon:Eurosun,2008
    2 Li G.Sensible heat thermal storage energy and exergy performance evaluations.Renew Sust Energy Rev,2016,53:897-923
    3 Han J X,Yang Y P,Hou H J.Review on sensible heat thermal energy storage in solar thermal generation(in Chinese).Renew Energy Res,2014,32:901-905[汉京晓,杨勇平,侯宏娟.太阳能热发电的显热蓄热技术进展.可再生能源,2014,32:901-905]
    4 Nkwetta D N,Haghighat F.Thermal energy storage with phase change material-A state-of-the art review.Sust Cities Soc,2014,10:87-100
    5 Sharif M K A,Al-Abidi A A,Mat C,et al.Review of the application phase change material for heating and domestic hot water systems.Renew Energy Res,2015,42:557-568
    6 Xu B,Li P W,Chan C.Application of phase change materials for thermal energy storage in concentrated solar thermal power plants:Areview to recent developments.Appl Energy,2015,160:286-307
    7 Pielichowska K,Pielichowski K.Phase change materials for thermal energy storage.Prog Mater Sci,2014,65:67-123
    8 Xu Z G,Zhao C Y,Ji Y N,et al.State-of-the-art of phase-change thermal storage at middle-low temperature(in Chinese).Energy Stor Sci Tech,2014,3:179-190[徐治国,赵长颖,纪育楠,等.中低温相变蓄热的研究进展.储能科学与技术,2014,3:179-190]
    9 Aydin D,Casey S P,Riffat S.The latest advancements on thermochemical heat storage systems.Renew Sust Energy Rev,2015,41:356-367
    10 Yan T,Wang R Z,Li T X,et al.A review of promising candidate reactions for chemical heat storage.Renew Sust Energy Rev,2015,43:13-31
    11 Pardo P,Deydier A,Anxionnaz-Minvielle Z,et al.A review on high temperature thermochemical heat energy storage.Renew Sust Energy Rev,2014,32:591-610
    12 Trausel F,de Jong A,Cuypers R.A review on the properties of salt hydrates for thermochemical storage.Energy Procedia,2014,48:447-452
    13 Heier J,Bales C,Martin V.Combining thermal energy storage with buildings-A review.Renew Sust Energy Rev,2015,42:1305-1325
    14 Kuravi S,Trahan J,Goswami D Y,et al.Thermal energy storage technologies and systems for concentrating solar power plants.Prog Energy Comb Sci,2013,39:285-319
    15 Xu J,Wang R Z,Li Y.A review of available technologies for seasonal thermal energy storage.Sol Energy,2014,103:610-638
    16 IEA-ETSAP and IRENA.Thermal energy storage.Technology Brief E17,Bonn,2013
    17 Wentworth W E,Chen E.Simple thermal decomposition reactions for storage of solar thermal energy.Sol Energy,1976,18:205-214
    18 Aihara M,Nagai T,Matsushita J,et al.Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction.Appl Energy,2001,69:225-238
    19 Felderhoff M,Bogdanovic B.Review:High temperature metal hybrides as heat storage materials for solar and related applications.Int JMol Sci,2009,10:325-344
    20 Kato Y,Takahashi F,Sekiguchi T,et al.Study on medium temperature chemical heat storage using mixed hydroxides.Int J Refrig,2009,32:661-666
    21 Schaube F,Kohzer A,Schutz J,et al.De-and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermochemical heat storage.Part A:Experimental results.Chem Eng Res Des,2013,91:856-864
    22 Chubb T A.Analysis of gas dissociation solar thermal power system.Sol Energy,1975,17:129-136
    23 Hoshi A,Mills D R,Bittar A,et al.Screening of high melting point phase change materials(PCM)in solar thermal concentrating technology based on CLFR.Sol Energy,2005,79:332-339
    24 Liu M,Saman W,Bruno F.Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems.Renew Sust Energy Rev,2012,16:2118-2132
    25 Herrmann H,Kearney D W.Survey of thermal energy storage for parabolic trough power plants.J Sol Energy Eng,2002,124:145-152
    26 Geyer M A,Winter C J.Thermal storage for solar power plants.Sol Power Plants,1991,7:110-115
    27 Liu M,Steven T N H,Bell S,et al.Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies.Renew Sust Energy Rev,2016,53:1411-1432
    28 Teller O,Nicolai J P,Lafoz M,et al.Joint EASE/EERA Recommendations for a European Energy Storage Technology Development Roadmap Towards 2030.Brussels:European Association for Storage of Energy and European Energy Research Alliance,2013
    29 Tokoro H,Yoshikiyo M,Imoto K,et al.External stimulation-controllable heat-storage ceramics.Nat Commun,2015,6:7037
    30 Bhatt V D,Gohil K.Performance evaluation of solar cooker using some[N+4444]based ionic liquids as thermal energy storage materials.Adv Mat Lett,2013,4:277-282
    31 Zhu J,Bai L,Chen B,et al.Thermodynamic properties of phase change materials based on ionic liquids.Chem Eng J,2009,147:58-62
    32 Chacartegui R,Alovisio A,Ortiz C,et al.Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle.Appl Energy,2016,173:589-605
    33 Weber R,Kerskes H,Druck H.Development of a combined hot water and sorption store for solar thermal systems.Energy Procedia,2014,48:464-473
    34 Geissbuhler L,Kolman M,Zanganeh G,et al.Analysis of industrial-scale high-temperature combined sensible/latent thermal energy storage.Appl Therm Eng,2016,101:657-668

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700