高重频激光减阻的关键因素选择方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Selection Method of Key Parameters for Wave Drag Reduction by High Frequency Laser Energy
  • 作者:王殿恺 ; 卿泽旭 ; 李倩 ; 方娟
  • 英文作者:WANG Dian-kai;QING Ze-xu;LI Qian;FANG Juan;State Key Laboratory of Laser Propulsion & Application,Equipment Academy;
  • 关键词:高重频 ; 激光能量 ; 波阻 ; 量纲分析 ; 流动控制
  • 英文关键词:High frequency;;Laser energy;;Wave drag;;Dimensional analyzing;;Flow control
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:装备学院激光推进及其应用国家重点实验室;
  • 出版日期:2017-03-30 22:20
  • 出版单位:推进技术
  • 年:2017
  • 期:v.38;No.239
  • 基金:国家自然科学基金项目(11372356);; 国家重点实验室自主研究课题
  • 语种:中文;
  • 页:TJJS201705029
  • 页数:6
  • CN:05
  • ISSN:11-1813/V
  • 分类号:233-238
摘要
针对影响高重频激光降低超声速波阻的因素多而复杂的问题,研究关键无量纲参数对减阻性能的影响规律,目的是揭示其影响新机理,提出其选择新方法。首先采用量纲分析的方法提炼影响高重频激光减阻的关键无量纲参数,然后通过求解N-S方程研究各个无量纲参数对减阻性能的影响规律以及它们之间的制约关系,并通过流动分析揭示其影响原因,最后提出无量纲参数的优化选择方案。结果表明:高重频激光减阻性能取决于无量纲激光能量大小、激光注入位置和来流马赫数;减阻百分比和能量效率与无量纲激光能量大小呈指数关系,与激光注入位置呈先上升后下降的关系,减阻百分比与马赫数呈指数关系,能量效率与马赫数呈先上升后下降的关系,在马赫6时能量效率达到14左右;激光能量大小和注入位置对减阻性能的影响密切相关,存在优化的激光能量大小和注入位置,随着能量的提高,优化位置由1.5逐渐提高至2.6左右,提高幅度逐渐减小。研究结果揭示了关键参数对高重频激光减阻性能的影响规律,提出了关键参数的选择方法。
        The parameters for wave drag reduction by high frequency pulsed laser energy are multiplex. The effects of key non-dimensional parameters on wave drag reduction performance are studied in order to disclose new physical mechanisms of the key non-dimensional parameters and provide a new optimization method. Firstly,the key non-dimensional parameters are abstracted by dimensional analyzing. Secondly,influences of each of the key parameters and the relationships among them are studied by solving the N-S equations. Thirdly,the mechanisms of the influences are disclosed by the flow field distributions. Finally,the optimized selection method of the key parameters is suggested. The results indicate that performance of wave drag reduction depends on non-dimensional laser energy magnitude and depositing position and Mach number of the free stream. Drag reduction percent and power gain of laser energy are exponential with non-dimensional laser energy magnitude. It increases first then decreases with non-dimensional laser energy depositing position. Drag reduction percent is exponential with free stream Mach number. Power gain of laser energy increases to about 14 at Mach 6,and then decreases. The influences of non-dimensional laser energy magnitude and depositing position are tied up,and could be optimized. The optimized position increases from 1.5 to about 2.6 with the increasing of energy. The law of wave drag reduction performance influenced with the key non-dimensional parameters is disclosed,and optimization method is proposed.
引文
[1]李倩,洪延姬,叶继飞,等.LSDW速度随激光参数和环境气体压强变化规律的实验研究[J].推进技术,2010,31(1):123-128.(LI Qian,HONG Yan-ji,YE Ji-fei,et al.Experimental Study on Effects of Laser Parameters and Ambient Air Pressure on LSDW Velocity[J].Journal of Propulsion Technology,2010,31(1):123-128.)
    [2]李倩,金星,曹正蕊,等.激光等离子体点源减阻技术中入射能量对气动阻力的影响[J].推进技术,2010,31(3):377-380.(LI Qian,JIN Xing,CAO Zheng-rui,et al.Effects on Aerodynamic Drag of Incident Laser Energy in Technology of Laser Plasma Point Source Drag Reduction[J].Journal of Propulsion Technology,2010,31(3):377-380.)
    [3]Adelgren R,Elliott G,Knight D,et al.Energy Deposition in Supersonic Flows[R].AIAA 2001-0885.
    [4]Erinc Erdem,Leichao Yang,Konstantinos Kontis.Drag Reduction Studies by Steady Energy Deposition at Mach 5[R].AIAA 2011-1027.
    [5]Kim J H,Matsuda A,Sakai T,et al.Drag Reduction with High-Frequency Repetitive Side-on Laser Pulse Energy Depositions[R].AIAA 2010-5104.
    [6]Myrabo L N,Raizer Yu P,Shneider M N.Drag and Total Power Reduction for Artificial Heat Input in Front of Hypersonic Blunt Body[R].Beamed Energy Propulsion:Third International Symposium on Beamed Energy Propulsion,2005:485-498.
    [7]Riggins D,Nelson H F,Johnson E.Blunt-Body Wave Drag Reduction Using Focused Energy Deposition[J].AIAA Journal,1999,37(4):460-467.
    [8]David Sperber,Fabian Schmid,Hans-Albert Eckel,et al.Wave Drag Reduction of Blunt Bodies Using Laser Sustained Energy Deposition in Argon Atmosphere[R].AIAA 2012-2815.
    [9]Taylor T.Drag Reduction and Control Using Energetic and Electrostatic Force-Fields for Hypersonic Applications[R].AIAA 2004-0131.
    [10]Ogino Y,Ohnishi N,Taguchi S H,et al.Baroclinic Vortex Influence on Wave Drag Reduction Induced by Pulse Energy Deposition[J].Physics of Fluids,2009,21(6).
    [11]Hong Yanji,Wang Diankai,Li Qian,et al.Interaction of Single-Pulse Laser Energy with Bow Shock in a Hypersonic Flow[J].Chinese Journal of Aeronautics,2014,27(2):241-247.
    [12]方娟,洪延姬,李倩,等.高重复频率激光能量沉积减小超声速波阻的数值研究[J].强激光与粒子束,2011,23(5):1158-1162.
    [13]Skvotrsov V,Kuznetsov Yu.Consequences of Heat Concept of Electrical Discharge Influence on Aerodynamic Characteristics for Comparative Experiments in Aerodynamics[R].AIAA 2001-3051.
    [14]方娟.激光“空气锥”减小超声速飞行器波阻的方法研究[D].北京:装备学院,2012:87-112.
    [15]王殿恺.光能量控制高超声速波系结构特性研究[D].北京:装备学院,2013:34-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700